Quantum-dot spectrometer is small enough to function within a smartphone

July 2, 2015 by Anne Trafton, Massachusetts Institute of Technology
In this illustration, the Quantum Dot (QD) spectrometer device is printing QD filters — a key fabrication step. Other spectrometer approaches have complicated systems in order to create the optical structures needed. Here in the QD spectrometer approach, the optical structure — QD filters — are generated by printing liquid droplets. This approach is unique and advantageous in terms of flexibility, simplicity, and cost reduction.

Instruments that measure the properties of light, known as spectrometers, are widely used in physical, chemical, and biological research. These devices are usually too large to be portable, but MIT scientists have now shown they can create spectrometers small enough to fit inside a smartphone camera, using tiny semiconductor nanoparticles called quantum dots.

Such devices could be used to diagnose diseases, especially skin conditions, or to detect environmental pollutants and food conditions, says Jie Bao, a former MIT postdoc and the lead author of a paper describing the quantum dot spectrometers in the July 2 issue of Nature.

This work also represents a new application for , which have been used primarily for labeling cells and biological molecules, as well as in computer and television screens.

"Using quantum dots for spectrometers is such a straightforward application compared to everything else that we've tried to do, and I think that's very appealing," says Moungi Bawendi, the Lester Wolfe Professor of Chemistry at MIT and the paper's senior author.

Shrinking spectrometers

The earliest spectrometers consisted of prisms that separate light into its constituent wavelengths, while current models use optical equipment such as diffraction gratings to achieve the same effect. Spectrometers are used in a wide variety of applications, such as studying atomic processes and energy levels in physics, or analyzing tissue samples for biomedical research and diagnostics.

Replacing that bulky optical equipment with quantum dots allowed the MIT team to shrink spectrometers to about the size of a U.S. quarter, and to take advantage of some of the inherent useful properties of quantum dots.

Quantum dots, a type of nanocrystals discovered in the early 1980s, are made by combining metals such as lead or cadmium with other elements including sulfur, selenium, or arsenic. By controlling the ratio of these starting materials, the temperature, and the reaction time, scientists can generate a nearly unlimited number of dots with differences in an electronic property known as bandgap, which determines the wavelengths of light that each dot will absorb.

However, most of the existing applications for quantum dots don't take advantage of this huge range of light absorbance. Instead, most applications, such as labeling cells or new types of TV screens, exploit quantum dots' fluorescence—a property that is much more difficult to control, Bawendi says. "It's very hard to make something that fluoresces very brightly," he says. "You've got to protect the dots, you've got to do all this engineering."

Scientists are also working on solar cells based on quantum dots, which rely on the dots' ability to convert light into electrons. However, this phenomenon is not well understood, and is difficult to manipulate.

On the other hand, quantum dots' absorption properties are well known and very stable. "If we can rely on these properties, it is possible to create applications that will have a greater impact in the relative short term," Bao says.

Broad spectrum

The new quantum dot spectrometer deploys hundreds of quantum dot materials that each filter a specific set of wavelengths of light. The quantum dot filters are printed into a thin film and placed on top of a photodetector such as the charge-coupled devices (CCDs) found in cellphone cameras.

The researchers created an algorithm that analyzes the percentage of photons absorbed by each filter, then recombines the information from each one to calculate the intensity and wavelength of the original rays of light.

The more quantum dot materials there are, the more wavelengths can be covered and the higher resolution can be obtained. In this case, the researchers used about 200 types of quantum dots spread over a range of about 300 nanometers. With more dots, such spectrometers could be designed to cover an even wider range of light frequencies.

"Bawendi and Bao showed a beautiful way to exploit the controlled optical absorption of for miniature spectrometers. They demonstrate a spectrometer that is not only small, but also with high throughput and high spectral resolution, which has never been achieved before," says Feng Wang, an associate professor of physics at the University of California at Berkeley who was not involved in the research.

If incorporated into small handheld devices, this type of spectrometer could be used to diagnose skin conditions or analyze urine samples, Bao says. They could also be used to track vital signs such as pulse and oxygen level, or to measure exposure to different frequencies of ultraviolet light, which vary greatly in their ability to damage skin.

"The central component of such spectrometers—the quantum dot filter array—is fabricated with solution-based processing and printing, thus enabling significant potential cost reduction," Bao adds.

Explore further: Defects in atomically thin semiconductor emit single photons

More information: "Nanotechnology: Making mini-spectrometers with quantum dots", dx.doi.org/10.1038/nature14576

Related Stories

Shining a light on quantum dots measurement

January 15, 2015

Due to their nanoscale dimensions and sensitivity to light, quantum dots are being used for a number of bioimaging applications including in vivo imaging of tumor cells, detection of biomolecules, and measurement of pH changes.

Researchers fine-tune quantum dots from coal

March 18, 2015

Graphene quantum dots made from coal, introduced in 2013 by the Rice University lab of chemist James Tour, can be engineered for specific semiconducting properties in either of two single-step processes.

Making quantum dots glow brighter

September 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow different colors ...

Producing spin-entangled electrons

July 1, 2015

A team from the RIKEN Center for Emergent Matter Science, along with collaborators from several Japanese institutions, have successfully produced pairs of spin-entangled electrons and demonstrated, for the first time, that ...

Recommended for you

Fast computer control for molecular machines

January 19, 2018

Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

EWH
not rated yet Jul 02, 2015
Nice app, but quantum dots' absorption spectra are not very selective. Thin-film filters might be a better way to go, but perhaps the QD filters are cheaper.
HealingMindN
not rated yet Jul 02, 2015
I've got my FIRST check total of $9500 for a week, ...


I'm thinking that would be the price when they first come out, but would make the Star Trek "Tricorders" look stone age.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.