
 

Decoding the brain: Scientists redefine and
measure single-neuron signal-to-noise ratio
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Fig. 1. Raster plots of neural spiking activity. (A) Forty trials of spiking activity
recorded from a neuron in the primary auditory cortex of an anesthetized guinea
pig in response to a 200 μs/phase biphasic electrical pulse applied in the inferior
colliculus at time 0. (B) Fifty trials of spiking activity from a rat thalamic neuron
recorded in response to a 50 mm/s whisker deflection repeated eight times per
second. (C) Twenty-five trials of spiking activity from a monkey hippocampal
neuron recorded while executing a location scene association task. (D) Forty
trials of spiking activity recorded from a subthalamic nucleus neuron in a
Parkinson’s disease patient before and after a hand movement in each of four
directions (dir.): up (dir. U), right (dir. R), down (dir. D), and left (dir. L).
Credit: Czanner G, Sarma SV, Ba D, Eden UT, Wu W, Eskandar E, Lim HH,
Temereanca S, Suzuki WA, Brown EN (2015) Measuring the signal-to-noise
ratio of a neuron. Proc Natl Acad Sci USA 112(23):7141-7146.

(Phys.org)—The signal-to-noise ratio, or SNR, is a well-known metric
typically expressed in decibels and defined as a measure of signal
strength relative to background noise – and in statistical terms as the
ratio of the squared amplitude or variance of a signal relative to the
variance of the noise. However, this definition – while commonly used
to measure fidelity in physical systems – is not applicable to neural
systems, because neural spiking activity (in which electrical pulses called
action potentials travel down nerve fiber as voltage spikes, the pattern of
which encodes and transmits information) is more accurately
represented using point processes (random collections of points, each
representing the time and/or location of an event).

Recently, scientists at the University of Liverpool and Massachusetts
Institute of Technology refined the signal-to-noise ratio as an estimate of
a ratio of expected prediction errors, and moreover extended the
standard definition to one appropriate for single neurons using point
process generalized linear models (PP-GLM) – a flexible generalization
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of ordinary linear regression that allows for response variables that have
error distribution models other than a normal distribution. The
researchers conclude that their study provides a straightforward method
for determining the signal-to-noise ration of single neurons – and by
generalizing the standard SNR metric, they were able to explicitly
characterize the acknowledged fact that individual neurons are noisy
transmitters of information. The scientists state that their new approach
allows SNR computation on the same decibel scale for neurons and man-
made systems, and moreover applies to any analysis in which a
generalized linear model can be used as a statistical model – including
clinical trials, observational studies, and the optimization and evaluation
of neural prostheses.

Dr. Gabriela Czanner and Prof. Emery N. Brown discussed the paper
that they and their colleagues published in Proceedings of the National
Academy of Sciences. As might well be imagined, the scientists faced a
number of challenges in conducting their study. "Neurons communicate
through spiking activity in two ways – spike intensity modulation or
spike timing patterns," Czanner tells Phys.org. "In our work, in which the
fundamental challenge was to differentiate signal from noise in neuronal
spiking, we focused on spike intensity. This required identifying the
components that cause neurons to spike – or as Rieke and his colleagues
wrote1, 'To make meaningful estimates of information transmission we
need to understand something about the structure of the neural code.'"

Taking their lead from this quote, the scientists realized that in the case
of single neurons, the factors that modulate the spiking activity are the
stimulus, biophysical properties of the neuron, thermal noise, and
activity of neighboring neurons. They then employed statistics to show
that the signal regularity in the data that can be explained by stimulus
and the neuron's biophysical properties, while noise comprises the
remaining neural spiking dynamics not captured by the stimulus and
biophysical components.
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That said, Czanner points out, previous formulations of neural SNR – for
example, information theory adapted to derive Gaussian upper bounds
on individual neuron SNR, and coefficients-of-variation and Fano
factors (two measures of dispersion of a probability distribution or
frequency distribution) based on spike counts – fail to consider the point
process nature of neural spiking activity. (A Gaussian distribution is a
continuous probability distribution used to represent real-valued random
variables whose distributions are not known.) Moreover, these measures
and the Gaussian approximations are less accurate for neurons with low
spike intensity modulation or when information is contained in precise
spike timing patterns.

Brown notes that while the standard SNR definition assumes that a
system's measurements have a Gaussian distribution and that the noise is
added to the signal, neural systems produce binary observations in short
time intervals – that is, a distribution summarizing the number of events
in a short time interval, and when the probability of number of
observations depend on the number of observations in previous time
intervals. These observations are more accurately modeled as a point
process, and therefore differ significantly from Gaussian distributions
and from standard Binomial distributions. "Moreover," he adds, "these
observations are affected by both the signal and the noise in the neural
system – so the relationship is not additive."

Relatedly, he adds, it was vital to show that the neuronal signal-to-noise
ratio (SNR) estimates a ratio of expected prediction errors rather than
the standard SNR definition of signal amplitude squared and divided by
the noise variance. "Neurons emit binary electrical discharges, called
spikes, which are believed to be elementary unit of neural
communication," Brown tells Phys.org. "Hence, it's important to find out
precisely how much information and noise there is in the spikes."

Another challenge was determining that single neuron SNRs range from
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−29 to −3 decibels (dB), which meant selecting appropriate
approximating models of the spiking activity. "The model has to be
tailored to each neuron," Czanner stresses, "thus reflecting neurons' own
specific electrophysiology and the type of the stimulation, which was
either explicit or implicit. To achieve this we analyzed the SNR metric
from the perspective of statistical concepts." She says that showing that
traditional SNR is a random quantity that estimates a ratio of expected
prediction errors allowed them to extend the SNR standard definition to
one appropriate for single neurons by representing neural spiking activity
using a point process generalized linear model (PP-GLM).

"We estimate prediction errors using residual deviances from PP-GLM
fits," she continues. "Because the deviance is an approximate chi-
squared random variable whose expected value is the number of degrees
of freedom, we compute a bias-corrected SNR estimate appropriate for
single neuron analysis and use the bootstrap to assess its uncertainty." In
analyzing four neuroscience systems experiments, the researchers were
thereby able to show that the SNRs of individual neurons have – as
Brown says they expected – these very low decibel values. "In other
words, by generalizing the standard SNR metric we make explicit the
well-known fact that individual neurons are highly noisy information
transmitters – and at the same time, our framework expresses this SNR
ratio for neurons in the same units as that used for more standard
Gaussian additive noise systems."
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Fig. 2. Stimulus and history component estimates from the PP-GLM analyses of
the spiking activity in Fig. 1. (A) Guinea pig primary auditory cortex neuron. (B)
Rat thalamic neuron. (C) Monkey hippocampal neuron. (D) Human subthalamic
nucleus neuron. The stimulus component (Upper) is the estimated stimulus-
induced effect on the spike rate in A, C, and D and the impulse response
function of the stimulus in B. The history components (Lower) show the
modulation constant of the spike firing rate. Credit: Czanner G, Sarma SV, Ba
D, Eden UT, Wu W, Eskandar E, Lim HH, Temereanca S, Suzuki WA, Brown
EN (2015) Measuring the signal-to-noise ratio of a neuron. Proc Natl Acad Sci
USA 112(23):7141-7146.
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Interestingly, by calculating spiking history SNR (as is allowed by their
generalized SNR definition), the scientists demonstrated that taking into
account the neuron's biophysical processes – such as absolute and
relative refractory periods (the periods after the action potential, when
the neuron cannot spike again or can spike with low probability,
respectively), bursting propensity (the period of a neuron's rapid action
potentials ), local network dynamics, and, in this case, spiking history –
is often a more informative predictor of spiking propensity than the
signal or stimulus activating the neuron.

An important step in their investigation was to acknowledge that SNR is
an estimator or a statistic, meaning that it has statistical properties that
need to be evaluated. "The values of the SNR estimate are random, and
so change if an experiment is repeated," Czanner says. "We therefore
had to identify these properties in order to be certain that the estimate is
constructed in a principled way." She notes that a key property of the
SNR estimator is that it is biased, because by definition it always gives a
positive value even when there is no signal. "To this end, we proposed a
simple bias adjustment that worked well in simulation studies."

In reviewing their research, Czanner and Brown identified the key
innovations the team developed used to address these myriad challenges:

● Determining that the quantity being estimated by the SNR is a ratio of
prediction errors

● Employing the PP-GLM framework to estimate deviances as a
generalization of sums of squares (is a mathematical approach to
determining the dispersion of data points) so that the concept of the SNR
can be extended to neurons and agrees with the concept used for
Gaussian systems

7/10



 

● Defining a way to take account of non-signal yet relevant covariates
that also affect the spiking propensity of the neuron, which we
accomplished using the linear terms from the Volterra series
approximation to the log of the conditional intensity function expanded
in terms of the stimulus and the spiking history

● Determining that the numerator and denominator are both
approximate chi-squared random variables whose means give
approximations to the appropriate bias corrections, allowing the team to
compute the approximate bias correction to the biased SNR estimate

● Reporting the SNR for implicit and explicit neural stimuli (those
attended to or not, respectively)

● Being able to compute the SNR on the same decibel scale for neurons
and man-made systems by using appropriate GLM models for each

In their paper, the researchers state that their redefined SNR is
extensible to any generalized linear model in which the factors
modulating the response can be expressed as separate components of a
likelihood function (a function of the parameters of a statistical model).
"Our SNR metric is applicable to any system whose measurements can
be described via a generalized linear model," Czanner tells Phys.org.
"The idea is to fit the model to the data, which effectively estimates the
signal and the noise. (The model needs to be validated via, for example,
standard goodness-of-fit criteria and autocorrelation tests) The new SNR
can then be calculated by using deviances that generalize the concept of
error sum of squares (a mathematical determination of the dispersion of
data points) to generalized linear models. This means that the SNR is
defined for all generalized linear models where the signal and non-signal
components can be separated and hence estimated as different parts of a
generalized linear model – and in fact, one of the key ideas in our work
was to define the approximating model as the logarithm of conditional
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intensity, which allowed us to separate the signal or stimulus from the
neuron's own biophysical properties."

In terms of next steps, the scientists are planning to extend the SNR
definition to analyze the SNR of neuronal ensembles, in which several
neurons communicate with each other. "This is a so-called multivariate
case where several neurons are considered at the same time," Brown
says, "and we'd like to know how ensemble SNR represents a relevant
signal or stimulus."

The scientists say that the areas of research that might benefit from their
new SNR concept are limitless. "Our definition applies readily to any
situation in which a generalized linear model can be used as a statistical
model, such as areas of research where measurements do not follow a
Gaussian distribution n and/or when the noise is not additive and/or
correlated," Czanner tells Phys.org. For example," she illustrates, "we are
considering developing SNR metrics for evaluation of strength of
surrogate biomarkers in clinical trials and observational studies, in which
the surrogate biomarkers can be electrophysiological measurements
from a human diabetic retina with the signal being the stage of diabetic
retinopathy, or surrogate markers of retinal damage in malarial retina
where the signal is the extend of brain swelling."

Brown also sees their SNR approach being used to accurately evaluate
neuronal signal information. "We therefore envision that in the future
this will reinforce the search for neurons that carry maximal information
for the purpose of neural prostheses – and in this scenario, neural SNR
may also be used to evaluate the performance of neural prostheses
devices."

  More information: Measuring the signal-to-noise ratio of a neuron, 
Proceedings of the National Academy of Sciences, (2015) 112:23
7141-7145, doi:10.1073/pnas.1505545112 
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