Physicists shatter stubborn mystery of how glass forms

June 29, 2015 by Pamela Smyth
Credit: Lynn Greyling/public domain

A physicist at the University of Waterloo is among a team of scientists who have described how glasses form at the molecular level and provided a possible solution to a problem that has stumped scientists for decades.

Their simple theory is expected to open up the study of glasses to non-experts and undergraduates as well as inspire breakthroughs in novel nanomaterials.

The paper published by physicists from the University of Waterloo, McMaster University, ESPCI ParisTech and Université Paris Diderot appeared in the prestigious peer-reviewed journal, Proceedings of the National Academy of Sciences (PNAS).

Glasses are much more than silicon-based materials in bottles and windows. In fact, any solid without an ordered, crystalline structure—metal, plastic, a polymer—that forms a molten liquid when heated above a certain temperature is a glass. Glasses are an essential material in technology, pharmaceuticals, housing, renewable energy and increasingly nano electronics.

"We were surprised—delighted—that the model turned out to be so simple," said author James Forrest, a University Research Chair and professor in the Faculty of Science. "We were convinced it had already been published."

The theory relies on two basic concepts: and string-like co-operative movement. Molecular crowding describes how molecules within glasses move like people in a crowded room. As the number of people increase, the amount of free volume decreases and the slower people can move through the crowd. Those people next to the door are able to move more freely, just as the surfaces of glasses never actually stop flowing, even at lower temperatures.

The more crowded the room, the more you rely on the co-operative movement with your neighbours to get where you're going. Likewise, individual molecules within a glass aren't able to move totally freely. They move with, yet are confined by, strings of weak molecular bonds with their neighbours.

Theories of crowding and cooperative movement are decades old. This is the first time scientists combined both theories to describe how a liquid turns into a glass.

"Research on glasses is normally reserved for specialists in ," said Forrest, who is also an associate faculty member at Perimeter Institute for Theoretical Physics and a member of the Waterloo Institute for Nanotechnology. "Now a whole new generation of scientists can study and apply glasses just using first-year calculus."

Their theory successfully predicts everything from bulk behaviour to surface flow to the once-elusive phenomenon of the glass transition itself. Forrest and colleagues worked for 20 years to bring theory in agreement with decades of observation on glassy materials.

An accurate theory becomes particularly important when trying to understand dynamics at the nanoscale. This finding has implications for developing and manufacturing new nanomaterials, such as glasses with conductive properties, or even calculating the uptake of glassy forms of pharmaceuticals.

Explore further: Physicists solve 20-year-old debate surrounding glassy surfaces

More information: Cooperative strings and glassy interfaces, Thomas Salez, DOI: 10.1073/pnas.1503133112

Abstract
We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam–Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel–Fulcher–Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer.

Related Stories

When things get glassy, molecules go fractal

April 24, 2014

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between liquids and gases, ...

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

swordsman
not rated yet Jun 30, 2015
Not so simple as they make it sound, and not a very good explanation.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.