End of the dinosaurs gave rise to the modern 'Age of Fishes,' researchers find

June 30, 2015 by Robert Monroe, The Scripps Research Institute
An assortment of Early Cenozoic ichthyoliths (fish teeth and shark scales) from the South Pacific Ocean following the End-Cretaceous Mass Extinction. Scale bar is 500 um. Credit: E. Sibert and B. House.

A pair of paleobiologists from Scripps Institution of Oceanography, UC San Diego have determined that the world's most numerous and diverse vertebrates – ray-finned fishes – began their ecological dominance of the oceans 66 million years ago, aided by the mass extinction event that killed off dinosaurs.

Scripps graduate student Elizabeth Sibert and Professor Richard Norris analyzed the microscopic teeth of fishes found in sediment cores around the world and found that the abundance of ray-finned teeth began to explode in the aftermath of the mass die-off of species, which was triggered by an asteroid strike in the Yucatan Peninsula. Scientists refer to this episode as the Cretaceous-Paleogene (K/Pg) .

Ninety-nine percent of all fish species in the world – from goldfish to tuna and salmon – are classified as ray-finned fishes. They are defined as species with bony skeletal structures and have teeth that are well preserved in deep ocean mud. Sharks, in contrast, have cartilaginous skeletons and are represented by both teeth and mineralized scales, also known as denticles, in marine sediments.

"We find that the extinction event marked an ecological turning point for the pelagic marine vertebrates," write the authors in the study. "The K/Pg extinction appears to have been a major driver in the rise of ray-finned fishes and the reason that they are dominant in the open oceans today."

The breakthrough for the researchers in reaching their conclusion came through their focus on fossilized teeth and shark scales. In cores from numerous ocean basins, they found that while the numbers of sharks remained steady before and after the extinction event, the ratio of ray-finned fish teeth to shark teeth and scales gradually rose, first doubling then becoming eight times more abundant 24 million years after the extinction event. Now there are 30,000 ray-finned fish species in the ocean, making this class the most numerically diverse and ecologically dominant among all vertebrates on land or in the ocean.

Scientists had known that the main diversification of ray-finned fishes had happened generally between 100 million and 50 million years ago.

"The diversification of fish had never been tied to any particular event. What we found is that the mass extinction is actually where fish really took off in abundance and variety," said Sibert, who is the recipient of an NSF Graduate Research Fellowship. "What's neat about what we found is that when the asteroid hit, it completely flipped how the oceans worked. The extinction changed who the major players were."

Sibert and Norris believe that some key changes in the oceans might have helped ray-finned fishes along. Large marine reptiles disappeared during the mass extinction, as did the ammonites, an ancient cephalopod group similar to the chambered nautilus. Those species, the researchers believe, had been either predators of ray-finned fishes or competitors with them for resources.

"What's amazing," said Norris, "is how quickly fish double, then triple in relative abundance to sharks after the extinction, suggesting that fish were 'released' from predation or competition by the extinction of other groups of marine life."

Sibert noted that before the extinction event, ray-finned fishes existed in a state of relative ecological insignificance, just like mammals on land.

"Mammals evolved 250 million years ago but didn't become really important until after the mass extinction. Ray-finned fishes have the same kind of story," said Sibert. "The lineage has been around for hundreds of millions of years, but without the 66 million years ago, it is very likely that the oceans wouldn't be dominated by the fish we see today."

The paper, "New Age of Fishes initiated by the Cretaceous-Paleogene ," appears June 29 in the early edition version of the journal Proceedings of the National Academy of Sciences.

Explore further: Mass extinction led to many new species of bony fish

More information: "New Age of Fishes initiated by the Cretaceous−Paleogene mass extinction" PNAS 2015 ; published ahead of print June 29, 2015, DOI: 10.1073/pnas.1504985112

Related Stories

Mass extinction led to many new species of bony fish

December 1, 2014

Today, ray-finned fish, which belong to the bony fish, are by far the most biodiverse fish group in both salt- and freshwater. Their spectacular variety of forms ranges from eels, tuna, flounders and angler fish all the way ...

In ancient fish teeth, a tale of ecological resilience

August 26, 2014

(Phys.org) —Microscopic fish teeth may carry a message of hope from an ecological upheaval in the distant past, scientists at Yale University and the University of California-San Diego (UCSD) have found.

Reef fish arrived in two waves

April 10, 2014

(Phys.org) —The world's reefs are hotbeds of biological diversity, including over 4,500 species of fish. A new study shows that the ancestors of these fish colonized reefs in two distinct waves, before and after the mass ...

Recommended for you

When does one of the central ideas in economics work?

February 20, 2019

The concept of equilibrium is one of the most central ideas in economics. It is one of the core assumptions in the vast majority of economic models, including models used by policymakers on issues ranging from monetary policy ...

In colliding galaxies, a pipsqueak shines bright

February 20, 2019

In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using ...

Research reveals why the zebra got its stripes

February 20, 2019

Why do zebras have stripes? A study published in PLOS ONE today takes us another step closer to answering this puzzling question and to understanding how stripes actually work.

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.