Improving the delivery of chemotherapy with graphene

June 2, 2015
Two hands manipulating an IV for chemotherapy administration to a patient. Credit: National Cancer Institute/ Linda Bartlett

A new study published in IOP Publishing's journal 2D Materials has proposed using graphene as an alternative coating for catheters to improve the delivery of chemotherapy drugs.

The research suggests that placing graphene - an extremely thin sheet of carbon atoms - on the internal surfaces of intravenous catheters commonly used to deliver chemotherapy drugs into a patient's body will improve the efficacy of treatments, and reduce the potential of the catheters breaking.

The study indicates that damaging interactions can occur between the most commonly used chemotherapy drug, 5-Fluorouracil (5-Fu), and silver—one of the most widely used coating materials in medical applications.

As a result of this damage the researchers believe the drug may not deliver the desired therapeutic effect in patients, and that chemotherapy treatment may be compromised.

Furthermore, the research indicates that a by-product of the reaction between 5-Fu and silver is hydrogen fluoride (HF), a strong acid. This raises concerns that silver and HF may be injected into the patient along with the treatment.

Co-author of the study Justin Wells, from the Norwegian University of Science and Technology, said: "As far as we know, nobody has ever looked at the chemical reaction between chemotherapy drugs and the materials they routinely come into contact with, such as catheters and needles and their coatings. It is just assumed that the drugs are delivered into the body intact.

"We have shown that silver is catalytically degrading the chemotherapy drugs, which means they are probably not being correctly delivered into the patient. Our research indicates that one of the decay products of this reaction is HF, which would be a worrying thing to inject into a patient."

As a solution to this problem, the international team of researchers have proposed using graphene as an alternative coating material for catheters.

In their study, the researchers used a technique known as x-ray photoemission spectroscopy (XPS) to study the chemical composition of 5-Fu, as well as the drug's reactions with silver and graphene.

XPS is a technique used to measure the surface chemistry of a particular material by firing a beam of x-rays at it and collecting the electrons that are subsequently emitted from the very top layer of the material. The researchers performed these measurements at the Swedish national synchrotron laboratory—MAX IV Laboratory.

Their results showed that when 5-Fu comes into contact with silver, reactions occur in which there is a massive loss of the element fluoride from the drug, leading to the creation of HF.

When the researchers repeated this experiment with 5-Fu and graphene, they found that these reactions completely disappeared and that graphene caused no damage to the drug.

Graphene is a biocompatible material with low toxicity that has already been suggested as an external coating for biomedical applications. The researchers state that the fabrication of thin coatings is technological feasible and can even be grown on top of to maintain compliance with existing fabrication methods.

"Our findings are an important first step in this new field. Together with our collaborators and students, we are increasing our understanding of the critical interactions between drugs and medical coatings, with a view to making the knowledge freely available for all to use," Wells continued.

"This study was a simplified version of real life , so our future studies will look to mimic the processes more closely by examining real drug mixtures that contain other active ingredients as well as a salt solution. We will also look to extend our experiments to include other ."

Explore further: Nanosilver and the future of antibiotics

More information: This paper can be downloaded from iopscience.iop.org/2053-1583/2/2/025004/article

Related Stories

Nanosilver and the future of antibiotics

May 27, 2015

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the patient and the environment?

Graphene is thinnest known anti-corrosion coating

February 22, 2012

New research has established the "miracle material" called graphene as the world's thinnest known coating for protecting metals against corrosion. Their study on this potential new use of graphene appears in ACS Nano.

Graphene growth on silver

January 14, 2014

Users from Northwestern University, working with the Center for Nanoscale Materials EMMD Group at Argonne, have demonstrated the first growth of graphene on a silver substrate.

Graphene oxide biodegrades with help of human enzymes

June 2, 2015

Graphene Flagship researchers show how graphene oxide suspended in water biodegrades in a reaction catalysed by a human enzyme, with the effectiveness of the breakdown dependent on the colloidal stability of the suspension. ...

Recommended for you

Taming 'wild' electrons in graphene

October 23, 2017

Graphene - a one-atom-thick layer of the stuff in pencils - is a better conductor than copper and is very promising for electronic devices, but with one catch: Electrons that move through it can't be stopped.

Breakthrough in ultra-fast data processing at nanoscale

October 20, 2017

A research team from the National University of Singapore has recently invented a novel "converter" that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.

Art advancing science at the nanoscale

October 18, 2017

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.