PHYS 19X

System fixes bugs by importing functionality
from other programs—without access to
source code

June 29 2015, by Larry Hardesty

T

FEES = rowstride * height: _
.(byteslrowstﬁt;;-_- h:?;\:\;)
B [overflowy
:. } : o { » :

' f if (!((length [Kimage->bytes pex i
{ printf("Horizontal Code Transh

L
iy
i
it

Credit: Jose-Luis Olivares/MIT

At the Association for Computing Machinery's Programming Language
Design and Implementation conference this month, MIT researchers

1/6

PHYS 19X

presented a new system that repairs dangerous software bugs by
automatically importing functionality from other, more secure
applications.

Remarkably, the system, dubbed CodePhage, doesn't require access to
the source code of the applications whose functionality it's borrowing.
Instead, it analyzes the applications' execution and characterizes the
types of security checks they perform. As a consequence, it can import
checks from applications written in programming languages other than
the one in which the program it's repairing was written.

Once it's imported code into a vulnerable application, CodePhage can
provide a further layer of analysis that guarantees that the bug has been
repaired.

"We have tons of source code available in open-source repositories,
millions of projects, and a lot of these projects implement similar
specifications," says Stelios Sidiroglou-Douskos, a research scientist at
MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL)
who led the development of CodePhage. "Even though that might not be
the core functionality of the program, they frequently have
subcomponents that share functionality across a large number of
projects."

With CodePhage, he says, "over time, what you'd be doing is building
this hybrid system that takes the best components from all these
implementations."

Sidiroglou-Douskos and his coauthors—MIT professor of computer
science and engineering Martin Rinard, graduate student Fan Long, and
Eric Lahtinen, a researcher in Rinard's group—refer to the program
CodePhage is repairing as the "recipient" and the program whose
functionality it's borrowing as the "donor." To begin its analysis,

2/6

PHYS 19X

CodePhage requires two sample inputs: one that causes the recipient to
crash and one that doesn't. A bug-locating program that the same group
reported in March, dubbed DIODE, generates crash-inducing inputs
automatically. But a user may simply have found that trying to open a
particular file caused a crash.

Carrying the past

First, CodePhage feeds the "safe" input—the one that doesn't induce
crashes—to the donor. It then tracks the sequence of operations the
donor executes and records them using a symbolic expression, a string of
symbols that describes the logical constraints the operations impose.

At some point, for instance, the donor may check to see whether the size
of the input is below some threshold. If it is, CodePhage will add a term
to its growing symbolic expression that represents the condition of being
below that threshold. It doesn't record the actual size of the file—just the
constraint imposed by the check.

Next, CodePhage feeds the donor the crash-inducing input. Again, it
builds up a symbolic expression that represents the operations the donor
performs. When the new symbolic expression diverges from the old one,
however, CodePhage interrupts the process. The divergence represents a
constraint that the safe input met and the crash-inducing input does not.
As such, it could be a security check missing from the recipient.

CodePhage then analyzes the recipient to find locations at which the
input meets most, but not quite all, of the constraints described by the
new symbolic expression. The recipient may perform different
operations in a different order than the donor does, and it may store data
in different forms. But the symbolic expression describes the state of the
data after it's been processed, not the processing itself.

3/6

PHYS 19X

At each of the locations it identifies, CodePhage can dispense with most
of the constraints described by the symbolic expression—the constraints
that the recipient, too, imposes. Starting with the first location, it
translates the few constraints that remain into the language of the
recipient and inserts them into the source code. Then it runs the recipient
again, using the crash-inducing input.

If the program holds up, the new code has solved the problem. If it
doesn't, CodePhage moves on to the next candidate location in the
recipient. If the program is still crashing, even after CodePhage has tried
repairs at all the candidate locations, it returns to the donor program and
continues building up its symbolic expression, until it arrives at another
point of divergence.

Automated future

The researchers tested CodePhage on seven common open-source
programs in which DIODE had found bugs, importing repairs from
between two and four donors for each. In all instances, CodePhage was
able to patch up the vulnerable code, and it generally took between two
and 10 minutes per repair.

As the researchers explain, in modern commercial software, security
checks can take up 80 percent of the code—or even more. One of their
hopes is that future versions of CodePhage could drastically reduce the
time that software developers spend on grunt work, by automating those
checks' insertion.

"The longer-term vision is that you never have to write a piece of code
that somebody else has written before," Rinard says. "The system finds
that piece of code and automatically puts it together with whatever
pieces of code you need to make your program work."

4/6

https://phys.org/tags/source+code/
https://phys.org/tags/security+checks/
https://phys.org/tags/security+checks/

PHYS 19X

"The technique of borrowing code from another program that has similar
functionality, and being able to take a program that essentially is broken
and fix it in that manner, is a pretty cool result," says Emery Berger, a
professor of computer science at the University of Massachusetts at
Ambherst. "To be honest, I was surprised that it worked at all."

"The donor program was not written by the same people," Berger
explains. "They have different coding standards; they name variables
differently; they use all kinds of different variables; the variables could
be local; or they could be higher up in the stack. And CodePhage is able
to identify these connections and say, 'These variables correlate to these
variables.' Speaking in terms of organ donation, it transforms that code
to make it a perfect graft, as if it had been written that way in the
beginning. The fact that it works as well as it does is surprising—and
cool."

More information: "Automatic error elimination by horizontal code
transfer across multiple applications." Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and
Implementation. dl.acm.org/citation.cfm?1d=2737988

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: System fixes bugs by importing functionality from other programs—without access to
source code (2015, June 29) retrieved 20 March 2024 from https://phys.org/mews/2015-06-bugs-
importing-functionality-programswithout-access.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private

5/6

https://phys.org/tags/program/
https://phys.org/tags/code/
http://dl.acm.org/citation.cfm?id=2737988
http://web.mit.edu/newsoffice/
https://phys.org/news/2015-06-bugs-importing-functionality-programswithout-access.html
https://phys.org/news/2015-06-bugs-importing-functionality-programswithout-access.html

PHYS 19X

study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

6/6

http://www.tcpdf.org

