
 

Topology looks for the patterns inside big
data
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What good is all this data if we can’t figure out how to analyze it? Credit: Elif
Ayiter, CC BY-NC-ND

Big data gets much attention from media, industry and government.
Companies and labs generate massive amounts of data associated with
everything from weather to cell phone usage to medical records, and
each data set may involve hundreds of variables.
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http://bits.blogs.nytimes.com/category/data/?_r=0
http://www.forbes.com/sites/louiscolumbus/2014/10/19/84-of-enterprises-see-big-data-analytics-changing-their-industries-competitive-landscapes-in-the-next-year/
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504767


 

These sets are so large and complex that traditional methods of looking
for patterns within them can't make much headway. Often touted as a
silver bullet, data analytics certainly have the potential to make inroads
into once intractable problems. But we have to be able to figure out what
we're looking at.

Statistics 101 invariably contains a lecture or two about linear regression
– finding the best line that fits a set of points scattered in a plane. These
graphs often show up in articles about climate change, for example,
where temperature and other weather data are plotted against time, or in
economic forecasts where employment or GDP history is used to
extrapolate into the future.

But what if the set of points doesn't lie near a line but instead forms
something like a circle?

Clearly regression isn't useful in this context, but we know that only
because we can see that the points form a circle.

Now imagine instead a collection of points lying on a circle in a higher-
dimensional space. In three dimensions we might be able to see the
circle, but if we have more variables, as often happens when examining
large data sets, we are in trouble. How could we detect the circle? Better:
how could we tell a computer to find the circle?

These are the types of questions arising from the growth of big data –
and algebraic topology provides some answers.

How to make sense of big data spatially

Topology is sometimes called "rubber sheet geometry." To a topologist,
a sphere and a cube are the same thing. Imagine a cube made from
flexible material; inserting a straw and blowing into the cube would puff
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https://phys.org/tags/data+analytics/
https://phys.org/tags/big+data/


 

it out into a sphere. Operations like this are called deformations, and two
objects are considered to be the same if one can be deformed to the
other.

  
 

  

A regression line can show the relationship between height and weight in a group
of people. Credit: Jake, CC BY

Topologists study spaces by assigning algebraic objects called invariants
to them. They may be as simple as an integer, but they are often more
complicated algebraic structures. For data analysis, the invariant of
choice is persistent homology.

Ordinary homology measures the number of "holes" that cannot be filled
in a space. Let's think about a sphere again. If we draw a loop on the
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sphere, it bounds a 2-dimensional disc on the surface; that is, we can fill
in any loop on the sphere and so there are no 2-dimensional "holes." By
contrast, the surface of the sphere itself bounds a 3-dimensional "hole"
that cannot be filled.

The Betti numbers of a space count the number of such unfillable holes
of each dimension. A sphere has second Betti number equal to 1
(because its interior cannot be filled) and first Betti number equal to 0
(because any loop bounds a disc on the sphere). The zero-th Betti
number counts the number of pieces a space has; in the case of the
sphere we have one piece. There are higher-dimensional versions of this
as well for more complicated spaces.

The problem with using ordinary homology for data analysis is that if we
compute the homology of a discrete set of data points, we will be
disappointed. There are no holes, only a collection of disconnected
points. The zero-th Betti number will count how many points there are,
but as there are no loops or spheres in such a set the higher Betti
numbers will all be 0. This is where persistent homology enters the story.

We need to take our discrete set of points and join them together.
Imagine putting a small ball of radius r around each point in our data set.
If r is very small, then none of the balls will intersect and the Betti
numbers of all the balls in the set are the same as for the discrete set.
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A collection of points on the circle (left), and the best-fitting line (right). Credit:
Kevin Knudson, CC BY-NC-ND

However, if we allow r to grow, then eventually the balls will begin to
touch and we will likely get nontrivial higher Betti numbers. In the
animation, we see that once r reaches a certain threshold, the balls
around the top three points intersect in pairs and therefore contain the
triangle joining the three points. Moreover, we cannot fill in the triangle
since there's a small gap in the middle; this means the first Betti number
is 1 at that stage. But as r gets a bit bigger, then all three balls intersect at
once and we can fill in the triangle; the first Betti number then drops to
0.

Persistent homology tracks these numbers as the radius grows; the plot
of these numbers against the parameter r is called a barcode. Long bars
suggest features in the data that may be significant (they persist, hence
the terminology). Short bars often arise from noise in the data and may
be disregarded (or not – context is important).

So what we've done is pass from a discrete collection of points to a
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sequence of more complicated spaces (one for each r) which hopefully
model the data much better than a simple linear regression might.

In the above animation, we show how a few points on a circle might be
modeled in this way. We have suppressed the balls around the points,
connecting two points when their associated balls overlap, forming
triangles when three intersect and so on. A circle persists for quite a long
time, leading us to guess that our data lie near a circle.
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A closed loop on the surface of a sphere; it bounds a disc and therefore does not
add to the first Betti number. Credit: Peter Saveliev, CC BY-NC-ND

Applications beyond the theory

Gunnar Carlsson of Stanford University is one of the pioneers of
topological data analysis. One of his group's first successes was the
discovery of the topology of the space of natural images. This data set
consists of several million 3-pixel by 3-pixel patches sampled from black
and white digital photographs. Each pixel is described by a number
between 0 and 255, measuring its grayscale value; each 3-by-3 patch
then corresponds to a point in a 9-dimensional space, each coordinate
giving the numerical value of the associated pixel. After tossing out the
constant patches and doing some normalizations, this space lies inside a
7-dimensional sphere. At first glance, the set appears to fill out the
sphere, but structure emerges by restricting attention to areas where the 
points pack closer together.

Carlsson and his collaborators showed that the data actually lie on a 
Klein bottle, a nonorientable 2-dimensional surface embedded in the 
sphere. They were able to push this further to find a compression
algorithm for photos that is slightly better than the industry standard 
JPEG 2000. Carlsson has published an excellent survey of this work.
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http://math.stanford.edu/~gunnar/
https://phys.org/tags/data+analysis/
https://phys.org/tags/points/
http://en.wikipedia.org/wiki/Klein_bottle
https://phys.org/tags/sphere/
http://www.jpeg.org/jpeg2000/
http://www.ams.org/journals/bull/2009-46-02/S0273-0979-09-01249-X/


 

  

Balls of increasing radius around data points. Credit: Kevin Knudson, CC BY-
NC-ND

In light of this success, Carlsson and some of his colleagues founded 
AYASDI, a company with a growing roster of clients in banking,
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http://www.ayasdi.com/


 

finance, government and other industries. They use these and other
techniques to analyze diabetes, breast cancer and cardiopulmonary
disease data. The results are encouraging – certain subgroups of patients
with high survival rates, invisible using traditional statistical methods,
may be found via these techniques.

The real promise of these methods, however, lies in the possibility of
tailoring treatments and solutions to individuals. Analysis of large data
sets lets us know, for example, that a drug once thought to be 80%
effective is actually 100% effective on 80% of patients, identifiable via
some marker. Topological data analysis provides another tool to advance
these analytics, often identifying features that were hidden before.
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http://www.ayasdi.com/wp-content/uploads/2015/02/JoA_Ayasdi.pdf
http://www.ayasdi.com/wp-content/uploads/2015/02/Topology_Based_Data_Analysis_Identifies_a_Subgroup_of_Breast_Cancer_with_a_unique_mutational_profile_and_excellent_survival.pdf
http://www.ayasdi.com/wp-content/uploads/2015/01/publication_Using_TDA_for_Diagnosis_Pulmonary_Embolism.pdf
http://www.ayasdi.com/wp-content/uploads/2015/01/publication_Using_TDA_for_Diagnosis_Pulmonary_Embolism.pdf
https://phys.org/tags/data/


 

A circle persists in the spaces as the radius of the balls increases. Credit: Kevin
Knudson, CC BY-NC-ND

This story is published courtesy of The Conversation (under Creative
Commons-Attribution/No derivatives).
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