Blind signatures using offline repositories

Digital signatures are mechanisms for authenticating the validity or authorship of a certain digital message and they aim to be digital counterparts to real (or analog) signatures. The concept was introduced by Diffie and Hellman in 1976. Notice that, when certified, digital signatures have the same legal power as traditional signatures.

With the advent of quantum computation new threats to security became a near future reality and all known schemes are vulnerable, compromising fundamental properties of signature schemes: authenticity and authorship uniqueness. In order to overcome the potential threat of quantum computation, the community started to envisage the possibility of using laws to develop new protocols that are resilient against quantum adversaries.

In the paper we show how to build such a digital blind signature scheme under the assumption that we have an offline repository and using quantum information. As a future work of this application would be the possibility of creating untraceable money, an ultimate goal of cryptography.

This work was partially supported, under the PQDR (Probabilistic, Quantum and Differential Reasoning) and Capri initiatives of SQIG at IT, CV-Quantum initiative of SQIG and Optical Communications and Photonics groups at IT, by FCT and EU FEDER, namely via the FCT PEst-OE/EEI/LA0008/2013 and UID/EEA/50008/ 2013 projects, as well as by the European Union's Seventh Framework Programme for Research (FP7). Andre Souto also acknowledges the FCT postdoc grant SFRH/ BPD/76231/2011. Joao Ribeiro acknowledges the scholarship awarded by Fundacao Calouste Gulbenkian through the program Novos Talentos em Matematica for undergraduate students.


Explore further

Quantum communication scheme provides guaranteed security without quantum memories

More information: The paper can be found in www.worldscientific.com/doi/pd … 42/S0219749915500161 in latest issue of the International Journal of Quantum Information (IJQI).
Citation: Blind signatures using offline repositories (2015, May 13) retrieved 11 December 2019 from https://phys.org/news/2015-05-signatures-offline-repositories.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
11 shares

Feedback to editors

User comments