Porous, layered material can serve as a graphene analog

May 19, 2015
Porous, layered material can serve as a graphene analog
Top view (left) and side view (right), illustrating the porous and layered structure of a highly conductive powder, precursor to a new, tunable graphene analog. Credit: Mircea Dincă, Massachusetts Institute of Technology

An electrically conductive material, with layers resembling graphene (single sheet of graphite), was synthesized under mild conditions using a well-known molecule that allows good electronic coupling of nickel ions and organic moieties. The new porous material exhibits high electrical conductivity as a bulk material that is potentially tunable and has unusual temperature dependence, suggesting new fundamental physics.

The new porous material is a crystalline, structurally tunable electrical conductor with a ; such materials are sought after for applications in storing energy and for investigating the fundamental physics of layered, two-dimensional materials.

Metal-organic frameworks (MOFs) are hybrid organic-inorganic materials that have traditionally been studied for gas storage or separation applications owing to their high surface area. Making good out of these normally insulating materials has been a long-standing challenge, as highly porous intrinsic conductors could be used for a range of applications, including energy storage. Researchers at the Massachusetts Institute of Technology and Harvard University have demonstrated that combining an organic molecule, 2,3,6,7,10,11-hexaiminotriphenylene (abbreviated as HITP), with in aqueous ammonia solution and air causes the self-assembly of a highly conductive porous black powder, Ni3(HITP)2. The new material is composed of stacks of infinite two-dimensional sheets resembling graphite, with a room temperature of ~40 S/cm.

Conductivity of this material is comparable to that of bulk graphite and among the highest for any conducting MOFs reported to date. Moreover, the temperature dependence of conductivity shows a linear dependence between 100 K and 500 K, suggesting an unusual charge transport mechanism that has not been previously observed in any organic semiconductors, and thus remains to be investigated. In bulk form, the material could be used for supercapacitors and electrocatalysis applications. Upon exfoliation, i.e., peeling off of successive layers, the material is expected to behave as a graphene analog with tunable bandgap and electromagnetic properties, suggesting new uses and exotic quantum properties in solid-state physics.

Explore further: New material for flat semiconductors

More information: "High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue," Journal of the American Chemical Society 136, 8859–8862, 2014. DOI: 10.1021/ja502765n

Related Stories

New material for flat semiconductors

April 30, 2014

Researchers around the world have been working to harness the unusual properties of graphene, a two-dimensional sheet of carbon atoms. But graphene lacks one important characteristic that would make it even more useful: a ...

From graphene hydrogels to high-performance anodes

March 18, 2015

How can the electrodes of batteries be made more efficient? In the journal Angewandte Chemie, American scientists describe a powerful approach that uses solvated graphene frameworks as the anode material. Assembled in a lithium ...

Electrons move like light in three-dimensional solid

April 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional materials, such ...

Free pores for molecule transport

July 31, 2014

Metal-organic frameworks (MOFs) can take up gases similar to a sponge that soaks up liquids. Hence, these highly porous materials are suited for storing hydrogen or greenhouse gases. However, loading of many MOFs is inhibited ...

Recommended for you

Breakthrough in ultra-fast data processing at nanoscale

October 20, 2017

A research team from the National University of Singapore has recently invented a novel "converter" that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.

Art advancing science at the nanoscale

October 18, 2017

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.