NASA seeks additional information for asteroid redirect mission spacecraft

May 19, 2015 by David E. Steitz, NASA

NASA has issued a Request for Information (RFI) seeking ideas from American companies for a spacecraft design that could be used for both the agency's Asteroid Redirect Mission (ARM) and a robotic satellite servicing mission in low-Earth orbit.

In the early-2020s NASA plans to launch the Asteroid Redirect Mission, which will use a to capture a large boulder from the surface of a near-Earth asteroid and move it into a stable orbit around the moon for exploration by astronauts, all in support of advancing the nation's journey to Mars.

NASA also has been studying the "Restore-L" mission concept, during which a would use dexterous robotic systems to grapple and refuel a government satellite in low-Earth orbit. Restore-L would bring to operational status capabilities needed for future commercial satellite servicing by demonstrating technologies and reducing risk.

"Today's call for ideas from our industry partners is another important milestone for the Asteroid Redirect Mission, a critical capability demonstration mission that's part of our stepping stone approach for sending American astronauts to Mars in the 2030s," said NASA Associate Administrator Robert Lightfoot. "As part of our acquisition strategy, we're asking for more information toward the ARM spacecraft concept and also on commonality with a notional robotic satellite servicing spacecraft."

The RFI is not a request for proposal or formal procurement and therefore is not a solicitation or commitment by the government. Deadline for submissions is 45 days after public posting of the RFI. The full RFI is available here.

Following its rendezvous and touchdown with the target asteroid, the uncrewed ARM spacecraft will deploy robotic arms to capture a large boulder from its surface. It then will begin a multi-year journey to redirect the boulder into orbit around the moon.

Throughout its mission, the ARM robotic spacecraft will test a number of capabilities needed for future human missions, including advanced Solar Electric Propulsion (SEP), a valuable capability that converts sunlight to electrical power through solar arrays and then uses the resulting power to propel charged atoms to move a spacecraft. This method of propulsion can move massive cargo very efficiently. While slower than conventional chemical rocket propulsion, SEP-powered spacecraft require significantly less propellant and fewer launches to support human exploration missions, which could reduce costs.

This RFI seeks spacecraft designs that may include taking advantage of Xenon capacity SEP, single or multiple component architectures and cost-sharing partnerships.

Future SEP-powered spacecraft could pre-position cargo or vehicles for future human missions into deep space, either awaiting crews at Mars or staged around the moon as a waypoint for expeditions to the Red Planet.

ARM's SEP-powered robotic spacecraft will test new trajectory and navigation techniques in deep space, working with the moon's gravity to place the asteroid in a stable lunar orbit called a distant retrograde orbit. This location is a suitable staging point for astronauts to rendezvous with a deep space habitat that will carry them to Mars.

Before the large asteroid boulder is moved to lunar orbit, NASA will use the opportunity to test planetary defense techniques to inform mitigation of potential asteroid impact threats in the future. The experience and knowledge acquired through this operation will help NASA develop options to move an asteroid off an Earth-impacting course, if and when that becomes necessary.

NASA's Near Earth Objects Program continues to implement new capabilities and upgrades to existing projects for detecting and cataloging asteroids. The agency also has engaged non-traditional partners and the public in the hunt for undetected asteroids through the NASA's Asteroid Grand Challenge activities, including prize competitions. In March, the agency announced the release of a software application based on an algorithm created through a NASA challenge that has the potential to help increase the number of detections in collected sky images.

Explore further: Asteroid's distant 'flyby' Thursday

More information: For more information about NASA's Asteroid Initiative, visit: www.nasa.gov/asteroidinitiative

Related Stories

Asteroid's distant 'flyby' Thursday

May 14, 2015

An asteroid, designated 1999 FN53, will safely pass more than 26 times the distance of Earth to the moon on May 14. To put it another way, at its closest point, the asteroid will get no closer than 6.3 million miles away ...

NASA asteroid hunter spacecraft data available to public

March 27, 2015

Millions of images of celestial objects, including asteroids, observed by NASA's Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft now are available online to the public. The data was collected following ...

Recommended for you

New space industry emerges: on-orbit servicing

November 17, 2018

Imagine an airport where thousands of planes, empty of fuel, are left abandoned on the tarmac. That is what has been happening for decades with satellites that circle the Earth.

SpaceX gets nod to put 12,000 satellites in orbit

November 16, 2018

SpaceX got the green light this week from US authorities to put a constellation of nearly 12,000 satellites into orbit in order to boost cheap, wireless internet access by the 2020s.

Electric blue thrusters propelling BepiColombo to Mercury

November 16, 2018

In mid-December, twin discs will begin glowing blue on the underside of a minibus-sized spacecraft in deep space. At that moment Europe and Japan's BepiColombo mission will have just come a crucial step closer to Mercury.

Overflowing crater lakes carved canyons across Mars

November 16, 2018

Today, most of the water on Mars is locked away in frozen ice caps. But billions of years ago it flowed freely across the surface, forming rushing rivers that emptied into craters, forming lakes and seas. New research led ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.