The kinematics of merging galaxies

May 28, 2015, Harvard University
A false-color image of the merging galaxies UGC9618. Astronomers have studies whether it is possible to use internal gas motions to characterize luminous galaxies in the early universe as mergers when they are too distant to see morphological signs of distortions. Credit: NASA/Hubble

The unprecedented sensitivity of space telescopes has powered a revolution over the past decade in our understanding of galaxies in the young universe during its first billion years of existence. These primitive objects are so remote that their light has been traveling towards us for more than ninety percent of the age of the universe, but they could be detected by space observatories because they are intrinsically bright in the infrared. Their luminosity is almost surely the result of huge numbers of newly formed stars whose light warms the dust that then radiates at infrared wavelengths.

Do distant galaxies, the forebears of our current cosmic neighbors, make stars in the same way our galaxy does today? Astronomers are trying to unravel if and how galaxies in the are different from local ones. In the local universe, starbursts and luminous infrared emission is often the result of the merger of two galaxies, and astronomers naturally suspect that the physics of mergers is also implicated in distant, . The problem is that local mergers are readily identified as such because their morphologies display effects like disrupted structures, tidal arms, or bridges of material connecting the two galaxies. Distant objects are too far away to see these physical structures, however, and even ones that are somewhat closer would have features that are faint and hard to discern.

A collision between galaxies should disorder each galaxy's disk and disrupt the corresponding, systematic rotational motions. CfA astronomers Chao-Ling Hung and Howard Smith and their colleagues studied whether it was practical to use these "kinematic" effects to identify and classify distant mergers. The astronomers took twenty-four local, luminous mergers and artificially degraded their images to simulate their being far away (i.e., in the early universe). They then determined the internal motions via the Doppler effect in the emission lines of atomic hydrogen and nitrogen gas as it is appears across the image. (Recall that the Doppler effect is the apparent shift in the wavelength of a spectral line due to motion.) Their conclusions are that in some select situations (depending on the relative sizes of the merging and the stage of the merger) the kinematics does clearly reveal the presence of a merger, but for a high proportion of cases kinematics are not sufficient to identify mergers. Other merger indicators, for example as traced by the luminosity of temperature of the dust, are needed.

Explore further: Are ultra-luminous galaxies colliding?

More information: "Kinematic classifications of local interacting galaxies: implications for the merger/disk classifications at high-z." Chao-Ling Hung, Jeffrey A. Rich, Tiantian Yuan, Kirsten L. Larson, Caitlin M. Casey, Howard A. Smith, D. B. Sanders, Lisa J. Kewley, and Christopher C. Hayward, ApJ 803, 62, 2015.

Related Stories

Are ultra-luminous galaxies colliding?

June 27, 2014

( —ltra-luminous infrared galaxies ((ULIRGs) are galaxies whose luminosity exceeds that of a trillion suns, By way of comparison, our Milky Way galaxy has a typical modest luminosity of only about ten billion suns. ...

The diversity of distant galaxies

June 10, 2013

( —With the advent of powerful space infrared telescopes like the Spitzer Space Telescope and the (recently deceased) Herschel Space Telescope, astronomers have been able to study the properties of dust in galaxies ...

The cosmic evolution of galaxies

May 11, 2015

Our knowledge of the big bang has increased dramatically in the past decade, as satellites and ground-based studies of the cosmic microwave background have refined parameters associated with the very early universe, achieving ...

Astronomers unveil the farthest galaxy

May 5, 2015

An international team of astronomers led by Yale University and the University of California-Santa Cruz have pushed back the cosmic frontier of galaxy exploration to a time when the universe was only 5% of its present age.

Modeling galaxy mergers

June 3, 2013

( —Astronomers think that many galaxies, including our own Milky Way, have undergone similar collisions during their lifetimes. Although galaxy collisions are important and common, what happens during these encounters ...

Hubble eyes galaxy as it gets a cosmic hair ruffling

August 13, 2014

( —From objects as small as Newton's apple to those as large as a galaxy, no physical body is free from the stern bonds of gravity, as evidenced in this stunning picture captured by the Wide Field Camera 3 and ...

Recommended for you

Japan to make crater on asteroid to get underground samples

March 18, 2019

Japan's space agency said Monday that its Hayabusa2 spacecraft will follow up last month's touchdown on a distant asteroid with another risky mission—dropping an explosive on the asteroid to make a crater and then collect ...

Bright X-ray galactic nuclei

March 18, 2019

All massive galaxies are believed to host supermassive black holes (SMBH) at their centers that grow by accreting mass from their environment. The current picture also imagines that the black holes grow in size as their host ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1.8 / 5 (5) May 28, 2015
More merger mania. Most separated galaxies are diverging, not converging. Assuming the reverse is simply, an assumption.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.