Researchers report first observation of early stages of creation of a star-forming clump

May 7, 2015 by Bob Yirka, Phys.org report

A massive, very young clump in a disk galaxy at z = 1.987. Credit: Nature 521, 54–56 (07 May 2015) doi:10.1038/nature14409
(Phys.org)—An international team of space scientists has identified and observed the early stages of the creation of a star-forming clump, the first ever observed. In their paper published in the journal Nature, the team describes how they analyzed imaging and spectroscopy from the Hubble Space telescope to identify the clump, which they believe is likely to one day form a star.

As the team reports, star forming clumps come about in of gas and dust which are known as dark nebulae—in such clouds, particularly in dense portions, the materials tend to coalesce due to gravitational attraction, into clumps—these clumps eventually evolve into proto-stars, and then finally stars. The galaxy under observation (in the cluster CL J144910856) was calculated to have come into existence approximately three billion years after the Big Bang—making it less than ten million years old. Dark nebulae that produce stars are known informally as star factories and the team suggests that they are responsible for the formation of the central bulge in spiral galaxies. They estimate the clump they have been studying has up to a billion bits of material and note that it was only because of the very high resolution offered by the Hubble telescope that they were able to make the discovery at all. They also suggest that their observations indicate that star formation regions are rare, but when they do exist, tend to have a very long lifespan. Thus far, they report, they have studied 68 galaxies in the cluster for signs of rapid star formation.

It is hoped that the finding by the team will lead to a better understanding of star formation and by extension, , particularly in the early years of the universe. The clump under observation in this latest observation is believed to be very young, which could offer clues as to its initial state—currently the process by which clumps start to form is not really understood.

The researchers suggest that many more such clumps, particularly larger samples, will need to found and studied before true insights into the nature of early can be gained.

Explore further: Image: Hubble eyes galactic refurbishment

More information: An extremely young massive clump forming by gravitational collapse in a primordial galaxy, Nature, 521, 54–56 (07 May 2015) DOI: 10.1038/nature14409 . Arxiv: http://xxx.tau.ac.il/abs/1505.01290

Abstract
When cosmic star formation history reaches a peak (at about redshift z ≈ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies.

Related Stories

Image: Hubble eyes galactic refurbishment

May 4, 2015

The smudge of stars at the center of this NASA/ESA Hubble Space Telescope image is a galaxy known as UGC 5797. UGC 5797 is an emission line galaxy, meaning that it is currently undergoing active star formation. The result ...

Image: Hubble sweeps a messy star factory

December 22, 2014

This sprinkle of cosmic glitter is a blue compact dwarf galaxy known as Markarian 209. Galaxies of this type are blue-hued, compact in size, gas-rich, and low in heavy elements. They are often used by astronomers to study ...

Our Sun came late to the Milky Way's star-birth party

April 9, 2015

In one of the most comprehensive multi-observatory galaxy surveys yet, astronomers find that galaxies like our Milky Way underwent a stellar "baby boom," churning out stars at a prodigious rate, about 30 times faster than ...

Hubble explores the mysteries of UGC 8201

March 19, 2015

The galaxy UGC 8201, captured here by the NASA/ESA Hubble Space Telescope, is a dwarf irregular galaxy, so called because of its small size and chaotic structure. It lies just under 15 million light-years away from us in ...

Stars found forming at Milky Way's outer edge

February 27, 2015

Brazilian astronomers said Friday they had found two star clusters forming in a remote part of our Milky Way galaxy where such a thing was previously thought impossible.

A grand extravaganza of new stars

March 11, 2015

This dramatic landscape in the southern constellation of Ara (The Altar) is a treasure trove of celestial objects. Star clusters, emission nebulae and active star-forming regions are just some of the riches observed in this ...

Recommended for you

Can China keep it's climate promises?

March 26, 2019

China can easily meet its Paris climate pledge to peak its greenhouse gas emissions by 2030, but sourcing 20 percent of its energy needs from renewables and nuclear power by that date may be considerably harder, researchers ...

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

In the Tree of Life, youth has its advantages

March 26, 2019

It's a question that has captivated naturalists for centuries: Why have some groups of organisms enjoyed incredibly diversity—like fish, birds, insects—while others have contained only a few species—like humans.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.