

Air traffic control failure shows we need a
better approach to programming

May 28 2015, by Peter Bernard Ladkin

The higher they are, the further they have to fall. Credit: Ramil Sagum, CC BY

The causes of the National Air Traffic Services (NATS) flight control
centre system failure in December 2014 that affected 65,000 passengers
directly and up to 230,000 indirectly have been revealed in a recently
published report.

The final report from the UK Civil Aviation Authority's Independent
Inquiry Panel set up after the incident examines the cause of and

1/5

http://www.nats.aero/about-us/what-we-do/our-control-centres/
http://www.caa.co.uk/docs/2942/Independent%20Enquiry%20Final%20Report%202.0.pdf
http://www.caa.co.uk/application.aspx?appid=7&mode=detail&nid=2411
http://www.caa.co.uk/application.aspx?appid=7&mode=detail&nid=2411

response to the outage at the Swanwick control centre in Hampshire, one
of two sites controlling UK airspace (the other is at Prestwick in
Scotland). Safety is key, said the report. I agree. And safety was not
compromised in any way. Bravo!

"Independent" is a relative term, after all the panel includes Joseph
Sultana, director of Eurocontrol's Network Management, and NATS's
operations chief Martin Rolfe, as well as UK Civil Aviation Authority
board member and director of safety and airspace regulation Mark Swan
– all of whom have skin in the game. (Full disclosure: a panel member,
Professor John McDermid, is a valued colleague of many years.)

For a thorough analysis, however, it's essential to involve people who
know the systems intimately. Anyone who has dealt with software knows
that often the fastest way to find a fault in a computer program is to ask
the programmer who wrote the code. And the NATS analysis and
recovery involved the programmers too, Lockheed Martin engineers who
built the system in the 1990s. This is one of two factors behind the
"rapid fault detection and system restoration" during the incident on
December 12.

The report investigates two phenomena: the system outage, its cause and
how the system was restored. It also examines NATS' operational
response to the outage. The report also looks at what this says about how
well the findings and recommendations following the last major
incident, a year earlier, had been implemented. I just look at the first
here, but arguably the other two are more important in the end.

Cause and effect

In the NATS control system, real-time traffic data is fed into controller
workstations by a system component called the System Flight Server
(SFS). The SFS architecture is what is called "hot back-up". There are

2/5

two identical components (called "channels") computing the same data at
the same time. Only one is "live" in the running system. If this channel
falls over, then the identical back-up becomes the live channel, so the
first can be restored to operation while offline.

This works quite well to cope with hardware failures, but is no
protection against faults in the system logic, as that logic is running
identically on both channels. If a certain input causes the first channel to
fall over, then it will cause the second to fall over in exactly the same
way. This is what happened in December.

The report describes a "latent software fault" in the software, written in
the 1990s. Workstations in active use by controllers and supervisors
either for control or observation are called Atomic Functions (AF).
Their number should be limited by the SFS software to a maximum of
193, but in fact the limit was set to 151, and the SFS fell over when it
reached 153.

Deja vu

My first thought is that we've heard this before. As far back as 1997-98,
evidence given to the House of Commons Select Committee on
Environment, Transport and Regional Affairs reported that the NATS
system, then under development, was having trouble scaling from 30 to
100 active workstations. But this recent event was much simpler than
that – it's the kind of fault you see often in first-year university
programming classes and which students are trained to avoid through
inspection and testing.

There are technical methods known as static analysis to avoid such faults
– and static analysis of the 1990s was well able to detect them. But such
thorough analysis may have been seen as an impossible task: it was
reported in 1995 that the system exhibited 21,000 faults, of which 95%

3/5

http://www.parliament.the-stationery-office.co.uk/pa/cm199798/cmselect/cmenvtra/360iv/et0407.htm
http://www.parliament.the-stationery-office.co.uk/pa/cm199798/cmselect/cmenvtra/360iv/et0407.htm

had been eliminated by 1997 (hurray!) – leaving 1,050 which hadn't
been (boo!). Not counting, of course, the fault which triggered the
December outage. (I wonder how many more are lurking?)

How could an error not tolerated in undergraduate-level programming
homework enter software developed by professionals over a decade at a
cost approaching a billion pounds?

Changing methods

Practice has changed since the 1990s. Static analysis of code in critical
systems is now regarded as necessary. So-called Correct by Construction
(CbyC) techniques, in which how software works is defined in a
specification and then developed through a process of refinement in
such a way as demonstrably to avoid common sources of error, have
proved their worth. NATS nowadays successfully uses key systems
developed along CbyC principles, such as iFacts.

But change comes only gradually, and old habits are hard to leave
behind. For example, Apple's "goto fail" bug which surfaced in 2014 in
many of its systems rendered void an internet security function essential
for trust online – validating website authentication certificates. Yet it
was caused by a simple syntax error – essentially a programming typo –
that could and should have been caught by the most rudimentary static
analysis.

Unlike the public enquiry and report undertaken by NATS, Apple has
said little about either how the problem came about or the lessons
learned – and the same goes for the developers of many other software
packages that lie at the heart of the global computerised economy.

This story is published courtesy of The Conversation (under Creative
Commons-Attribution/No derivatives).

4/5

http://www.computerweekly.com/feature/A-brief-history-of-an-air-traffic-control-system
http://www.computerweekly.com/feature/A-brief-history-of-an-air-traffic-control-system
http://www.eschertech.com/products/correct_by_construction.php
http://proteancode.com/keynote.pdf
http://nats.aero/blog/2013/07/how-technology-is-transforming-air-traffic-management
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
http://theconversation.edu.au/

Source: The Conversation

Citation: Air traffic control failure shows we need a better approach to programming (2015, May
28) retrieved 20 March 2024 from https://phys.org/news/2015-05-air-traffic-failure-
approach.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

https://phys.org/news/2015-05-air-traffic-failure-approach.html
https://phys.org/news/2015-05-air-traffic-failure-approach.html
http://www.tcpdf.org

