How Salmonella survives the macrophage's acid attack

April 14, 2015, Public Library of Science
Salmonella Saintpaul bacteria (dark red)

Macrophages destroy bacteria by engulfing them in intracellular compartments, which they then acidify to kill or neutralize the bacteria. However, some pathogenic bacteria, such as Salmonella enterica, have evolved to exist and even grow while within these acidified compartments. Yet, how Salmonella responds to the acidic environment and how that environment affects the virulence of this pathogen are unclear. New research reveals that Salmonella fights acid with acid, by lowering the pH of its own interior in response to the acidification of the Salmonella-containing compartment by the macrophage, and by using that low pH as a signal to turn on genes needed to establish an infection.

"The question that we are addressing is: what is the signal that Salmonella senses when it is in the macrophage vacuole that turns on virulence gene expression and enables Salmonella to replicate and disseminate," says Linda J. Kenney, senior author and professor of the Mechanobiology Institute, National University of Singapore and at the University of Illinois at Chicago. Research from her group, publishing on April 14th in the Open Access journal PLOS Biology, demonstrates that the acidic cytoplasm then acts as a signal to stimulate the secretion of a particular class of Salmonella . These virulence proteins, or effectors, are released into the host cell, where they are able to perturb the immune response.

To investigate the effect of the acidic environment on Salmonella, the authors used a biosensor, called an I-switch, which allowed for measurements of pH within a single cell. Using the I-switch, the authors found that the Salmonella cytoplasm acidifies rapidly after being engulfed and exposed to the of the macrophage interior. Interestingly, they found that the Salmonella actively, as opposed to passively, acidify their cytoplasm.

According to Professor Kenney, scientists who study more complex organisms are "astonished to find that bacteria can survive a cytoplasmic pH of 5.6 and that they even use this to signal expression of ." Their research shows that low pH activates an intracellular signaling cascade, which induces the formation of a nanomachine called the type III secretion system. This nanomachine is composed of a needle complex used to inject bacterial virulence proteins into the host cell.

"Understanding that signals previously thought to be external, but now shown by us to be internal, changes our thinking about mechanisms of signal transduction," reports Professor Kenney. This work also identifies new potential therapeutic targets, which could be exploited to prevent the expression of the virulence proteins, thus blocking the ability of Salmonella to survive and flourish within the macrophage.

Explore further: Survey of salmonella species in Staten Island Zoo's snakes

More information: Chakraborty S, Mizusaki H, Kenney LJ (2015) A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection. PLoS Biol 13(4): e1002116. DOI: 10.1371/journal.pbio.1002116

Related Stories

Survey of salmonella species in Staten Island Zoo's snakes

March 30, 2015

For humans, Salmonella is always bad news. The bacterial pathogen causes paratyphoid fever, gastroenteritis and typhoid. But for snakes, the bacteria aren't always bad news. Certain species of Salmonella are a natural part ...

Internal cellular sensors make Salmonella dangerous: study

June 15, 2012

(Phys.org) -- Salmonella becomes dangerously virulent only when molecular sensors within the organism sense changes in the environment, a team of researchers from the Yale School of Medicine and the Yale Microbial Diversity ...

What fuels Salmonella's invasion strategy?

May 5, 2014

Certain strains of Salmonella bacteria such as Salmonella Typhimurium (S. Typhimurium) are among of the most common causes of food-borne gastroenteritis. Other strains of Salmonella such as S. Typhi are responsible for typhoid ...

Revealing camouflaged bacteria

April 16, 2014

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so called interferon-induced ...

Recommended for you

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Probiotic bacteria evolve inside mice's GI tracts

March 26, 2019

Probiotics—which are living bacteria taken to promote digestive health—can evolve once inside the body and have the potential to become less effective and sometimes even harmful, according to a new study from Washington ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.