Bury nuclear waste down a very deep hole, say UK scientists

April 14, 2015, University of Sheffield

Scientists at the University of Sheffield calculate that all of the UK's high level nuclear waste from spent fuel reprocessing could be disposed of in just six boreholes 5km deep, fitting within a site no larger than a football pitch.

The concept - called deep borehole disposal - has been developed primarily in the UK but is likely to see its first field trials in the USA next year. If the trials are successful, the USA hopes to dispose of its 'hottest' and most - left over from plutonium production and currently stored at Hanford in Washington State - in a deep borehole.

University of Sheffield researchers are presenting the latest findings relating to these trials and new concepts for sealing the into the boreholes at the American Nuclear Society (ANS) conference in Charleston this week (April 13-16).

Professor Fergus Gibb, of the University of Sheffield's Faculty of Engineering, explains: "Deep borehole disposal is particularly suitable for high level nuclear waste, such as spent fuel, where high levels of radioactivity and heat make other alternatives very difficult. Much of the drilling expertise and equipment to create the boreholes already exists in the oil and gas and geothermal industries. A demonstration borehole - such as is planned in the US - is what is now needed to move this technology forward."

At the ANS conference next week, Professor Gibb, with co-researcher Dr Karl Travis, will be presenting modelling work carried out by the University of Sheffield team on the Hanford waste, which confirms that around 40 per cent of the waste, in terms of radioactivity, currently stored at the US site could be disposed of in a single borehole.

Fundamental to the success of deep borehole disposal is the ability to seal the hole completely to prevent radionuclides getting back up to the surface. Professor Gibb has designed a method to do this which he will be presenting at the conference next week: to melt a layer of granite over the waste, which will re-solidify to have the same properties as natural rock.

Professor Gibb's colleague at the University of Sheffield, Dr Nick Collier, will propose a method of fixing and surrounding the waste within the borehole using specialist cements able to handle the temperatures and pressures at that depth.

Deep borehole disposal (DBD) has a number of advantages over the current solution envisaged for all UK nuclear waste, which is in a mined repository at 500m depth:

  • DBD is effectively 'pay-as-you-go' disposal. A mined repository can cost from hundreds of millions to tens of billions of dollars to construct before any waste can be disposed of; DBD costs a few tens of millions of dollars per borehole.
  • There are more geological sites suitable for DBD as the granite layer that is required can be found at appropriate depths under most of the continental crust.
  • A borehole could be drilled, filled and sealed in less than five years, compared to the current timescale for a UK mined repository, which is to open in 2040 and take its first waste by 2075 (although a site has not yet been agreed).
  • As DBD disposes of at greater depths and with greater safety and because there are more potential sites available, it should be easier to obtain public and political acceptance of the technology.
  • DBD has limited environmental impact and does not require a huge site: the holes are a maximum 0.6m in diameter and can be positioned just a few tens of metres apart. Once a borehole is complete, all physical infrastructure on the surface can be removed.
  • While seismic activity might damage the containers within the borehole, fracture the surrounding rock and disrupt some of the nearest barriers in the borehole, it would still not destroy the isolation of the waste or make it possible for radioactivity to reach the surface or any ground water.

The demonstration borehole in the USA will be drilled just under half a metre in diameter and trials will be conducted to ensure waste packages can be inserted into the borehole and recovered if required. Initial results are expected in 2016. If these results are positive, disposal of the Hanford waste capsules would then take place in another borehole, just 0.22m in diameter.

Explore further: Radioactive waste: Where to put it?

More information: The American Nuclear Society International High-Level Radioactive Waste Management conference "Real World Solutions for Integrated Management of Used Fuel and HLW" takes place in Charleston, USA from April 13-16. www.ans.org/meetings/m_215

Related Stories

Radioactive waste: Where to put it?

October 27, 2013

As the U.S. makes new plans for disposing of spent nuclear fuel and other high-level radioactive waste deep underground, geologists are key to identifying safe burial sites and techniques. Scientists at The Geological Society ...

Deep Alpine Fault borehole primed with instruments

January 14, 2015

An ambitious project to drill 1.3 kilometres into the Alpine Fault has been halted early by equipment problems, but it has still yielded a large amount of useful information about the inner workings of the fault.

Glass offers improved means of storing UK's nuclear waste

August 22, 2012

University of Sheffield researchers have shown, for the first time, that a method of storing nuclear waste normally used only for high level waste, could provide a safer, more efficient, and potentially cheaper, solution ...

Hot rocks fire up energy from the depths

June 23, 2010

(PhysOrg.com) -- Scientists at Newcastle University have completed the first phase of a giant central heating system that will harness heat from deep underground.

Recommended for you

Privacy becomes a selling point at tech show

January 7, 2019

Apple is not among the exhibitors at the 2019 Consumer Electronics Show, but that didn't prevent the iPhone maker from sending a message to attendees on a large billboard.

China's Huawei unveils chip for global big data market

January 7, 2019

Huawei Technologies Ltd. showed off a new processor chip for data centers and cloud computing Monday, expanding into new and growing markets despite Western warnings the company might be a security risk.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gstark
not rated yet Apr 28, 2015
Why not put it under the places that are either subducting or being buried by newly created land like the baby islands off Iceland, Hawaii, etc.

If you put a borehole into the subducted part of the Juan de Fuca plate in the Pacific northwest, for example, over time it would go farther into the mantle.

In the new land scenario, there are many places where, over time, land will build up and the site will be locked away for millions of years.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.