Meteorites key to the story of Earth's layers

April 13, 2015
Meteorite
Credit: NASA

A new analysis of the chemical make-up of meteorites has helped scientists work out when the Earth formed its layers.

The research by an international team of scientists confirmed the Earth's first crust had formed around 4.5 billion years ago.

The team measured the amount of the rare elements hafnium and lutetium in the mineral zircon in a meteorite that originated early in the solar system.

"Meteorites that contain zircons are rare. We had been looking for an old meteorite with large zircons, about 50 microns long, that contained enough hafnium for ," said Dr Yuri Amelin, from The Australian National University (ANU) Research School of Earth Sciences.

"By chance we found one for sale from a dealer. It was just what we wanted. We believe it originated from the asteroid Vesta, following a large impact that sent rock fragments on a course to Earth."

The heat and pressure in the Earth's interior mixes the of its layers over billions of years, as denser rocks sink and less dense minerals rise towards the surface, a process known as differentiation.

Determining how and when the layers formed relies on knowing the composition of the original material that formed into the Earth, before differentiation, said Dr Amelin.

"Meteorites are remnants of the original pool of material that formed all the planets," he said.

"But they have not had planetary-scale forces changing their composition throughout their five billion years orbiting the sun."

The team accurately measured the ratio of the isotopes hafnium-176 and hafnium-177 in the , to give a starting point for the Earth's composition.

The team were then able to compare the results with the oldest rocks on Earth, and found that the chemical composition had already been altered, proving that a crust had already formed on the surface of the Earth around 4.5 billion years ago.

Explore further: The abundance of water in asteroid fragments

More information: Meteorite zircon constraints on the bulk Lu−Hf isotope composition and early differentiation of the Earth, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1501658112

Related Stories

New study finds oceans arrived early to Earth

October 30, 2014

Earth is known as the Blue Planet because of its oceans, which cover more than 70 percent of the planet's surface and are home to the world's greatest diversity of life. While water is essential for life on the planet, the ...

New clues from the dawn of the solar system

March 16, 2015

A research group in the UA Lunar and Planetary Laboratory has found evidence in meteorites that hint at the discovery of a previously unknown region within the swirling disk of dust and gas known as the protoplanetary disk ...

Recommended for you

Dawn of a galactic collision

December 14, 2017

A riot of colour and light dances through this peculiarly shaped galaxy, NGC 5256. Its smoke-like plumes are flung out in all directions and the bright core illuminates the chaotic regions of gas and dust swirling through ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Torbjorn_Larsson_OM
5 / 5 (1) Apr 14, 2015
Crust @ 4.5 billion years, and oceans & continents @ 4.4 billion years (a point made in a web talk about plate tectonics from the AGU Fall meeting, from oxygen respectively metal isotope ratios).

We know all this thanks to zircons, a man's best friend.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.