Researchers discover new mechanism controlling cell response to DNA damage

April 30, 2015, H. Lee Moffitt Cancer Center & Research Institute

DNA can be damaged by different environmental insults, such as ultraviolet light, ionizing radiation, oxidative stress or certain drugs. If the DNA is not repaired, cells may begin growing uncontrollably, leading to the development of cancer. Therefore, cells must maintain an intricate regulatory network to ensure that their DNA remains intact. Moffitt Cancer Center researchers have discovered a novel mechanism that controls a cell's response to DNA damage.

The protein SIRT1 plays an important role in controlling DNA damage. It can sense the presence of DNA damage, signal to other proteins that damage exists, aid in the repair of damage and stimulate cell death if the damage cannot be repaired.

Moffitt researchers found that SIRT1 is modified by a process called ubiquitination, in which a small residue called ubiquitin is added to SIRT1. This modification allows SIRT1 to relay information about DNA damage to other proteins, leading to either DNA repair or cell death.

The researchers performed studies to determine how ubiquitin modification changes SIRT1 function. They discovered that cells respond to ubiquitin modification of SIRT1 differently according to the type of environmental insult that occurs. If cells are exposed to a drug called etoposide, SIRT1 ubiquitination blocks cell death. However, if cells are exposed to , SIRT1 ubiquitination promotes .

These results are important because they increase scientists' understanding of how proteins and function, potentially leading to more effective therapeutic drugs in the future.

"SIRT1 is known to be abnormally expressed in a variety of cancers and might be a good target for therapy. Ubiquitin-proteasome inhibitors have already been successfully used in cancer therapy and clinical trials. Therefore, this research might provide molecular bases and insights for developing additional therapeutic strategies in the future," explained Ed Seto, Ph.D., senior member of the Cancer Biology and Evolution Program at Moffitt.

The research was published in the Feb. 10 online edition of The Journal of Biological Chemistry.

Explore further: New method characterizes structure of protein that promotes tumor growth

More information: Journal of Biological Chemistry, www.jbc.org/content/290/14/8904.full.pdf+html

Related Stories

How does prostate cancer form?

December 18, 2014

Prostate cancer affects more than 23,000 men this year in the USA however the individual genes that initiate prostate cancer formation are poorly understood. Finding an enzyme that regulates this process could provide excellent ...

Researchers identify new mechanism to aid cells under stress

January 26, 2015

A team of biologists from NYU and Harvard has identified new details in a cellular mechanism that serves as a defense against stress. The findings potentially offer insights into tumor progression and neurodegenerative diseases, ...

Recommended for you

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.