Lab team develops hyper-stretchable elastic-composite energy harvester

A KAIST research team develops a hyper-stretchable elastic-composite energy harvester
Top row shows schematics of hyper-stretchable elastic-composite generator (SEG) enabled by very long silver nanowire-based stretchable electrodes. The bottom row shows the SEG energy harvester stretched by human hands over 200% strain. Credit: KAIST

A research team led by Professor Keon Jae Lee of the Department of Materials Science and Engineering at the Korea Advanced Institute of Science and Technology (KAIST) has developed a hyper-stretchable elastic-composite energy harvesting device called a nanogenerator.

Flexible electronics have come into the market and are enabling new technologies like flexible displays in mobile phone, , and the Internet of Things (IoTs). However, is the degree of flexibility enough for most applications? For many flexible devices, elasticity is a very important issue. For example, wearable/biomedical devices and electronic skins (e-skins) should stretch to conform to arbitrarily curved surfaces and moving body parts such as joints, diaphragms, and tendons. They must be able to withstand the repeated and prolonged mechanical stresses of stretching. In particular, the development of elastic energy devices is regarded as critical to establish power supplies in stretchable applications. Although several researchers have explored diverse stretchable electronics, due to the absence of the appropriate device structures and correspondingly electrodes, researchers have not developed ultra-stretchable and fully-reversible energy conversion devices properly.

Recently, researchers from KAIST and Seoul National University (SNU) have collaborated and demonstrated a facile methodology to obtain a high-performance and hyper-stretchable elastic-composite generator (SEG) using very long silver nanowire-based stretchable electrodes. Their stretchable piezoelectric generator can harvest mechanical energy to produce high power output (~4 V) with large elasticity (~250%) and excellent durability (over 104 cycles). These noteworthy results were achieved by the non-destructive stress- relaxation ability of the unique electrodes as well as the good piezoelectricity of the device components. The new SEG can be applied to a wide-variety of wearable energy-harvesters to transduce biomechanical-stretching energy from the body (or machines) to electrical .

Professor Lee said, "This exciting approach introduces an ultra-stretchable piezoelectric generator. It can open avenues for power supplies in universal wearable and biomedical applications as well as self-powered ultra-stretchable electronics."

This result was published online in the March issue of Advanced Materials, which is entitled "A Hyper-Stretchable Elastic-Composite Energy Harvester."


Explore further

Nanoengineers develop basis for electronics that stretch at the molecular level

Journal information: Advanced Materials

Citation: Lab team develops hyper-stretchable elastic-composite energy harvester (2015, April 13) retrieved 24 June 2019 from https://phys.org/news/2015-04-lab-team-hyper-stretchable-elastic-composite-energy.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
26 shares

Feedback to editors

User comments

Apr 13, 2015
4 volts and how much current? 4 volts by itself doesn't say much.

@hillmeister... another possibility would be the shock system on bikes and cars. That would probably be easier to hook electrical connections to than tires would be.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more