
 

It's complicated: Self-organized patterns
identify emergent behavior near critical
transitions

April 28 2015, by Stuart Mason Dambrot

  
 

  

Self-organization due to instability before a critical transition. When the phase
transition breaks the balance between the intrinsic dynamics and the peer
influence, the effect of peer influence dominates and a self-organized population
behavior emerges. Far from the transition, the dynamics F(•) dominate over the
relatively weaker interaction L• — exhibiting only individual motions. Near the
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transition, however, the returning force F’(•) becomes much weaker than the
persisting L• — the shifting balance from the dynamics to structure causes the
nodes to become highly coordinated, resulting in global patterns. Credit: Moon,
H. & Lu, T.-C. Network Catastrophe: Self-Organized Patterns Reveal both the
Instability and the Structure of Complex Networks. Sci. Rep. 5, 9450;
DOI:10.1038/srep09450 (2015). Copyright © 2015, Rights Managed by Nature
Publishing Group. Distributed under Creative Commons CC BY 4.0 license.

From the perspective of complex systems, a range of events – from
chemistry and biology to extreme weather and population ecology – can
be viewed as large-scale self-emergent phenomena that occur as a
consequence of deteriorating stability. Based on observing the self-
organized patterns associated with these phenomena, the elusive goal has
been the ability to interpret these emergent patterns to predict the related
critical events. Recently, scientists at HRL Laboratories, LLC in Malibu,
California sought to determine if there was a quantifiable relationship
between these patterns and the network of interactions characterizing the
event. By limiting their working definition of self-organization to
spontaneous order emergence resulting from a non-equilibrium phase
transition (that is, a change in a feature of a physical system – one that is
not simply isolated from the rest of the universe –that results in a
discrete transition of that system to another state), the researchers were
able to detect the transition based on the principal mode of the pattern
dynamics, and identify its evolving structure based on the observed
patterns. They found that while the pattern is distorted by the network of
interactions, its principal mode is invariant to the distortion even when
the network constantly evolves. The scientists then validated their
analysis on real-world markets and showed common self-organized
behavior near critical transitions, such as housing market collapse and
stock market crashes, thereby providing a proof-of-concept that their
goal of being able to detect critical events before they are in full effect is
possible.
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Senior Research Staff Scientist Tsai-Ching Lu and Research Staff
Scientist Hankyu Moon discussed the paper they published in Scientific
Reports. "When applying our method to detect the system's transition
based on the principal pattern dynamics mode, we first needed to ensure
that the input to our method was a valid observable that served as a
surrogate for the phenomena of interest," Lu tells Phys.org. "For
example, in our housing and stock market examples, we have well-
calibrated, clean, collective signals which are representative of potential
behavior manifestations of the systems. However, if we blindly apply our
method to extremely noisy and sparse input signals, we'll have a hard
time detecting the system's transition due to the still-applicable and
fundamental principle of computer science, garbage in, garbage out." In
other words, the researchers consider the identification of representative
input signals as the main challenge for detecting the system's transition –
especially for, exploratory phenomena of interest that are not well-
established.

"Our main finding from market data is that extreme and rare events have
clear indicative signatures," Moon point out. "For modeling and analysis,
this means that when we need a sufficiently long multi-dimensional time
series, we have less data to work with." For the stock market data, he
illustrates, they had an appropriate number of large-scale historic crashes
to work with, and so were able to verify the methodology's goodness-of-
fit (which describes how well a statistical model fits a set of
observations) – but on the other hand, sufficient historical housing
market data were not available.

Another issue, the scientists say, was robustly identifying the system's
evolving structure based on observed patterns. "In our simulation and
market examples," Lu explains, "we've seen structure amplifications
when a system is near its phase transition – but when further away, the
ability to make such observations is weaker. We believe this question
remains a largely open system identification problem in working with
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time series signals." More specifically, they see the major challenge as
properly defining the sliding window and leap window for capturing the
manifestation of pattern-based structural evolution. (In signal processing,
a window is a time-series segmentation of a time series signal. A sliding
window algorithm is a simple time-series analysis method for isolating
and viewing signal segments, in which a small window slides across the
time series, one time step at a time; a leap window is a modified sliding
window that increases algorithm speed by increasing the value of
intersegment transitions.) "Our work on market examples shows the
possibility of identifying a system's structure, but it's a small step
towards addressing the larger issue."

Moon adds that verifying the structure identification goodness-of-fit is
not straightforward. "We were able to verify the structure identification
goodness-of-fit through simulation where we know the network
connectivity, but in real-world examples the question of how to measure
the true connectivity of real-world networks remains an issue."

Relatedly, studying the simultaneous evolution of connectivity and phase
transitions was also challenging. "In our study, we showed the possibility
of deriving early warning indicators for systems with diffusion
dynamics," Lu says. "We expected our method to be generalizable for
systems with different dynamics – for example, reaction-diffusion
dynamics leading to Turing patterns. One of the major challenges in
studying these systems with real-world data is obtaining ground truth
labeling" – that is, identifying the absolute truth of the observed data
patterns by evaluating input signal fidelity.
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Difference in the growth of the covariance spectrum between a sparse (linear)
network and a dense (fully connected) network. (Top and bottom) The top plot
shows the growth of the covariance spectrum from a linearly connected network
as it evolves toward a fold bifurcation. The top plot shows the spectrum growth
for a fully connected network as it goes through the same evolution. Both μ1s
(top curves) reveal identical growths (verifying the invariance), but the rest of
the spectrum (curves beneath each top curve) show vastly different growth
profile. Note that higher order spectrum for the fully connected network is
collapsed into almost flat curves. (Right) Invariance and variance over 10
different network topologies. The upper plot shows uniform growths of μ1
computed over 10 networks having varied connectivity, verifying the invariance.
The lower plot shows the varied growths of μ2 computed for the same set of
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networks. Credit: Moon, H. & Lu, T.-C. Network Catastrophe: Self-Organized
Patterns Reveal both the Instability and the Structure of Complex Networks. Sci.
Rep. 5, 9450; DOI:10.1038/srep09450 (2015). Copyright © 2015, Rights
Managed by Nature Publishing Group. Distributed under Creative Commons CC
BY 4.0 license.

Reaction–diffusion systems are mathematical models which explain how
the concentration of one or more substances distributed in space changes
under the influence of two processes. Turing processes (named for Alan
Turing's theory1, which can be called a reaction–diffusion theory of 
morphogenesis, the biological process that causes an organism to develop
its shape) describe how non-uniformity – natural patterns such as stripes,
spots and spirals – may arise naturally out of a homogeneous, uniform
state.

"For some phenomena and systems of interest," Lu continues, "critical
transitions might be so rare that they would actually prohibit the
development and verification of early warning indicators, especially in
the setting of simultaneous evolution of connectivity and phase
transitions." That being said, he adds that they did obtain some initial
results for simulated Turing patterns, which they will proceed to test in
real-world datasets.

The researchers also had to derive a general indicator of a critical
transition that is not affected by its structure. When they began this
study, Lu recounts, they set out to develop structure-invariant indicators
for heterogeneously networked systems. "The major challenge was in the
intricacy of evolving structures and their dynamics. We started with
simulations to prove the concept of decoupling network structure from
the covariance spectrum, but it took some time to convince ourselves
that such an indicator existed." The scientists used covariance – a
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measure of how changes in one variable are associated with changes in a
second variable – to combine evolving dynamics, peer influence, and
random perturbation to derive a network of stochastic differential
equations. "When we tested these ideas on real-world data," Lu adds,
"we started to learn how well our indicators will work for various types
of systems."

  
 

  

Structure revealing pattern formation property. (Bottom) The horizontal axis
represents the time evolution of the network going through a pitchfork
bifurcation. Three 20 X 20 networks having distinct geometric
connections—grid, linear, and slanted—goes through the bifurcation. When each
network is far from the bifurcation, the state of the 20 X 20 = 400 node network
represented as pixel values show only slight differences. However, when each
network approaches the bifurcation point, the pattern clearly reveals the
underlying geometry. (Top 2 plots) Structure estimation at phase transition.
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9-node linear network dynamics was simulated to go through a pitchfork
bifurcation (lower plot), and the equation (4) estimates the Laplacian matrix
from the state covariance matrices. The difference in terms of Frobenius norm
between the estimated Laplacian matrix and the true Laplacian matrix is plotted
(upper plot). The difference achieves a minimum at the bifurcation point,
verifying the optimal structure recovery property at the phase transition. Credit:
Moon, H. & Lu, T.-C. Network Catastrophe: Self-Organized Patterns Reveal
both the Instability and the Structure of Complex Networks. Sci. Rep. 5, 9450;
DOI:10.1038/srep09450 (2015). Copyright © 2015, Rights Managed by Nature
Publishing Group. Distributed under Creative Commons CC BY 4.0 license.

The final obstacle was mathematically proving that the first eigenvalue
(each of a set of values of a parameter for which a differential equation
has a nonzero solution under given conditions) of the covariance
matrices computed from the time series is a network-invariant indicator
of instability. "The major difficulty was in finding the appropriate
mathematical tools to capture the linkage – that is, decoupling – of
network structure and time series analysis," Lu explains. "Linking
spectral graph theory and covariance metrics – the latter in the form of a
stochastic differential equation – enabled the proof."

"In addition," Moon notes, "after we empirically verified the invariance,
it intuitively made sense. The challenge was to derive the closed-form
expression of the covariance statistics eigenvalues using the structure
variables Laplacian eigenvalues," in which the number of times 0
appears as an eigenvalue in the Laplacian is the number of connected
components in the graph. Moon adds that classical tools by V.I. Arnold2

helped fill the gap.

To address these challenges, Lu relates, they found their key insight in
Scheffer's conceptualization3 that critical slowing down phenomena – in
which the return time of a disturbance back to equilibrium – increases
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close to a bifurcation can be quantified by statistical means. "When we
thought about networked dynamics, we naturally looked into the co-
variance spectrum as it generalizes the correlation and variance measures
of Scheffer's setup of homogeneous systems." (A system of linear
equations is homogeneous if all of the constant terms are zero.) "Our key
innovation lies in identifying structure-invariant and structure-revealing
measures, as they allow us to look into systems at various sizes and
dimensions."

In addition to the effective early warning signals introduced in the
literature3,4,5, Lu tells Phys.org that he and Moon were inspired to
investigate the simultaneous evolution of connectivity and phase
transitions in several application domains. "In particular, we were
fascinated by neural firing patterns in epileptic seizures, cascading
failures of electrical power grids, and close-to-chaos operation regions of
complex electronics. We see the investigation and analysis of complex
network structure and dynamics with data analytics as the key to
untangle these and myriad other mysteries."
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Correlation pattern dynamics as indicators of large-scale market crash. Stock
market shows peculiar patterns before large-scale crashes, as demonstrates for
the 2008 crash. The market crash happened on October 15, 2008, leading to the
DJIA losing 7.9%. The square blocks visualize the sequence of covariance
matrices from twelve share prices (subset of the DJIA constituents) before
(10/1/2008–10/14/2008) and after (10/15/2008–10/28/2008) the crash; darker
pixels represent higher pair-wise correlations between the share price
movements. The diverse correlations as shown in the top row represent typical
market behavior weeks before the event. However, staring 10/13 (the second
row) not only the overall correlation increased but the pattern persisted through
the following week (the third row) during and after the event (10/15). More
examples are provided in Supplementary Information 4. Credit: Moon, H. & Lu,
T.-C. Network Catastrophe: Self-Organized Patterns Reveal both the Instability
and the Structure of Complex Networks. Sci. Rep. 5, 9450;

10/15



 

DOI:10.1038/srep09450 (2015). Copyright © 2015, Rights Managed by Nature
Publishing Group. Distributed under Creative Commons CC BY 4.0 license.

The study's main finding showed that while the pattern is distorted by
the network of interactions, its principal mode is invariant to the
distortion even when the network constantly evolves – and Phys.org
asked the scientists how this invariance might reflect the neurobiology of
perceptual pattern recognition of ecological invariants, as posited by
James .J. Gibson in the theory of Ecological Psychology6. "This is a very
interesting question," Lu replied. "We may speculate that humans
explore such invariant cues to anticipate upcoming transitions. However,
individuals may interpret the cues differently; some may go deeper to
identify structural-revealing characteristics to optimize and adapt their
action relative to critical transitions, while others may simply ignore the
signals due to biased beliefs. It's also possible that our brain has been
wired to perceive such invariance as we perform perceptual or higher-
level cognitive reasoning. There's much to investigate."

"My highly ambitious, yet scientifically unfounded, conjecture," Moon
added, "would be that the brain might be performing linear algebra-
based spectral analysis to decompose the dynamics and summarize the
patterns!"

Phys.org also asked the researchers if – given that their analysis of real-
world markets shows common self-organized behavior near critical
transitions, and therefore that detection of critical events before they are
in full effect is possible, thereby making the question of timescale
extrapolation becomes important – they have a sense of the temporal
limit on early detection of critical events. "Yes," Lu said, "the timescale
extrapolation is very important. As mentioned earlier, our methods
depend on the fidelity of the input signals, subject to the data samples
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within the sliding and leap time windows used for computing the co-
variance spectrum – different systems are likely to require different
sampling granularity. It would be interesting to explore the theoretical
limit for the method to work."

  
 

  

Invariance (μ1) and pattern revealing properties for a small-world network (top)
and a scale-free network (bottom). The horizontal and vertical axes represent the
evolution of the networks toward a bifurcation and the eigenvalues, respectively.
The inset pictures compare 20x20 node states as patterns in 20x20 pixel values.
The locally connected neighbors of the small-world network appear as horizontal
strips in the pixel representation, and occasional thick strips capture the long
range correlation due to the non-local links that equip the network the small-
world property. The structure is amplified near the phase transition. The scale-
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free network does not reveal much structure either far from the transition, or
near the transition. Credit: Moon, H. & Lu, T.-C. Network Catastrophe: Self-
Organized Patterns Reveal both the Instability and the Structure of Complex
Networks. Sci. Rep. 5, 9450; DOI:10.1038/srep09450 (2015). Copyright ©
2015, Rights Managed by Nature Publishing Group. Distributed under Creative
Commons CC BY 4.0 license.

"At a basic level," Moon pointed out, "this can be simply a signal-to-
noise ratio problem. For a more rigorous characterization of prediction
horizon, we envision that recent developments in Gaussian processes and
random matrix theory may help." (Gaussian processes are a family of
stochastic processes in which every point in an input space is associated
with a normally distributed random variable, while a random matrix is a
matrix-valued random variable.)

In their paper, the researchers state that they believe that since increased
correlation and pattern dynamics are general behaviors of complex
networks, their proposed computational tool should find broader
applications. "We see potential applications not only in individual
application domains, but even more interestingly in interactions among
domains, such as social-technological systems, cyber-physical systems,
and neurobiological systems," Lu says. "For example, one may speculate
if it is even possible to detect a flash crash triggered by self-organized
algorithmic trading."

Regarding the planned next steps in their research, Lu tells Phys.org that
they plan to move forward in three main areas: expanding application
areas; deepening their understanding of critical transitions, especially for
interacting systems; and building data sources, tools, and statistical
methods for thorough evaluations of critical transitions. "We'd also like
to track and evaluate real-world impacts of decisions based on the early
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warnings our approach generates – for example, we'd be very interested
in finding suitable spatiotemporal data collected from natural systems to
test our method, especially datasets related to cancer research – and we
hope our research can interest more researchers in studying critical 
transitions in their fields."

  More information: Network Catastrophe: Self-Organized Patterns
Reveal both the Instability and the Structure of Complex Networks, 
Scientific Reports (2015) 5:9450, DOI:10.1038/srep09450 
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