Combining magnetism and light to fight cancer

April 1, 2015
Masson's trichrome staining: the cell nuclei are blue-black, the cytoplasms (cell bodies) are mauve and the collagen fibers are green. © Riccardo Di Corato - laboratoire MSC. Credit: CNRS/Université Paris Diderot

By combining, in a liposome, magnetic nanoparticles and photosensitizers that are simultaneously and remotely activated by external physical stimuli (a magnetic field and light), scientists at the Laboratoire Matière et Systèmes Complexes (CNRS/Université Paris Diderot) and the Laboratoire Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (CNRS/UPMC), obtained total tumor regression in mice. Non-toxic when they are not activated, such therapies can also achieve a reduction in adverse effects. These results, which demonstrate the importance of multiple treatments, were published in ACS Nano on 24 March 2015.

One of the strategies employed to limit the of cancer therapies is the development of nanocarrier systems that can convey active ingredients to target . These are referred to as "physical" therapies when the active substances, molecules or nanoparticles, can be remotely activated by external physical stimuli - in this case by light or a . In this context, the study team developed a new type of carrier that combines photosensitivity and magnetism. To achieve this, they first encapsulated in the inner compartment of a liposome in sufficient quantities to render it ultra-magnetic, before incorporating photosensitizers into its , while preserving an optimum size for circulation in the blood.

These liposomes, containing magnetic nanoparticles and photosensitizers, were injected directly into the tumor in the mouse model. The scientists thus combined two techniques to achieve complete destruction of cancer cells. The first one, magnetic hyperthermia, consists in exciting the nanoparticles with a magnetic field to raise the temperature of the tumor and destroy it.. The second method, photodynamic therapy, is made possible by the photosensitizers, which, when activated, release reactive oxygen species that are toxic to tumor cells. These two physical therapies act in synergy on the activity of the proteins involved in apoptosis, or programmed cell death. Their combination thus induces total regression of the tumor, while a single therapy is not able to stop its growth.

For the research team, the next stage consists in exploiting the "other" magnetic properties of liposomes in order to improve the treatment: nanoparticles are indeed visible under MRI and can be shifted using magnets. After an injection into the bloodstream, it would therefore become possible to use the magnets to target the liposomes towards the tumors, while mapping their final destination by MRI.

Explore further: Flower-like magnetic nanoparticles target difficult tumors

More information: "Combining Magnetic Hyperthermia and Photodynamic Therapy for Tumor Ablation with Photoresponsive Magnetic Liposomes" DOI: 10.1021/nn506949t

Related Stories

Flower-like magnetic nanoparticles target difficult tumors

March 3, 2015

Thanks to the work of an interdisciplinary team of researchers at the Dartmouth Center of Nanotechnology Excellence, funded by the National Institutes of Health, the next-generation magnetic nanoparticles (MNPs) may soon ...

Nanovectors combine cancer imaging and therapy

February 9, 2015

Researchers at Imperial College London and the Laboratoire de chimie de la matière condensée de Paris (CNRS/Collège de France/UPMC) have designed and developed hybrid gold-silica nanoparticles, which are turning out to ...

Progress in using magnetic fields to target tumors

October 19, 2012

(Phys.org)—Since the advent of cancer nanotechnology, researchers have sought to use magnetic fields to increase the concentration of drug-loaded iron oxide nanoparticles that reach a tumor. However, magnetic fields drop ...

Magnetic field directs nanoparticles to tumors

November 25, 2010

(PhysOrg.com) -- To improve the tumor-specific delivery of drug to tumors, a team of investigators from the University of California, San Diego (UCSD) has created a system of nanoparticles-within-a-nanoparticle that can be ...

Tuning light to kill deep cancer tumors

October 15, 2014

An international group of scientists led by Gang Han, PhD, at the University of Massachusetts Medical School, has combined a new type of nanoparticle with an FDA-approved photodynamic therapy to effectively kill deep-set ...

Recommended for you

Nanotube fiber antennas as capable as copper

October 23, 2017

Fibers made of carbon nanotubes configured as wireless antennas can be as good as copper antennas but 20 times lighter, according to Rice University researchers. The antennas may offer practical advantages for aerospace applications ...

Resistive memory components the computer industry can't resist

October 23, 2017

Make way for some new memsistors. For years, the computer industry has sought memory technologies with higher endurance, lower cost, and better energy efficiency than commercial flash memories. Now, an international collaboration ...

Taming 'wild' electrons in graphene

October 23, 2017

Graphene - a one-atom-thick layer of the stuff in pencils - is a better conductor than copper and is very promising for electronic devices, but with one catch: Electrons that move through it can't be stopped.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.