MESSENGER's endgame: Hover campaign promises bird's-eye view of Mercury's surface

March 19, 2015, Johns Hopkins University

MESSENGER will not go gentle into that good night. The mission will end sometime this spring, when the spacecraft runs out of propellant and the force of solar gravity causes it to impact the surface of Mercury. But the team initiated a "hover" observation campaign designed to gather scientific data from the planet at ultra-low altitudes until the last possible moment. Engineers have devised a series of orbit-correction maneuvers (OCMs) over the next five weeks—the first of which was carried out today—designed to delay the inevitable impact a bit longer.

A highly accurate OCM executed on January 21 targeting a 15-kilometer periapsis altitude—the lowest to date—set the stage for the hover campaign, in a short extension of the Second Extended Mission termed XM2-Prime (XM2'). The top science goals for XM2' will be carried out with the Magnetometer (MAG) and the Neutron Spectrometer (NS), and each instrument will target different objectives in different regions, explained MESSENGER Deputy Project Scientist Haje Korth, of The Johns Hopkins University Applied Physics Laboratory (APL), in Laurel, Md.

"With MAG, we will look for crustal magnetic anomalies," he said. "For instance, we have seen hints of crustal magnetization at higher altitudes (~70 kilometers) over the northern rise in Mercury's northern smooth plains. We will revisit this region at lower altitudes during XM2'. There may be other regions where such signals can be observed, and we will be looking for them."

"With NS, scientists will hone in on shadowed craters at northern high latitudes to search for water ice," Korth said. "We have found such evidence previously in the mission, but we hope to find more at low altitudes and spatially resolve the distribution within individual craters if we are lucky."

According to Korth, the observations enabled by this "saving throw" are no less significant than earlier ones. "Establishing the presence of crustal magnetic anomalies on Mercury would be a huge result, because it would extend the known temporal baseline for Mercury's internal magnetic field by eight orders of magnitude," he said. "Moreover, observing any such anomalies at different altitudes will allow the depth of the source to be determined."

"Since the periapsis altitude during the hover campaign is ~30 kilometers or less throughout XM2', we will have the opportunity to map half the planet with a magnetic magnifying glass, so to speak," he continued. "There are regions we have never seen at such low altitudes, and multiple areas of magnetic anomalies may be detected."

Staying Aloft

The ever-present tug of the Sun's gravity continues to perturb the spacecraft's orbit and drive downward toward the planet surface. For the last few weeks MESSENGER's altitude at closest approach has remained between 13 and 17 kilometers. To extend this hover campaign as long as possible, MESSENGER's mission design team optimized the trajectory design and the placement of each orbit-correction maneuver.

"We decided on a strategy that includes five maneuvers in as many weeks to keep the spacecraft within a tight altitude range of 5 to 39 kilometers above the surface of Mercury at closest approach," said APL's Jim McAdams, MESSENGER's Mission Design Lead Engineer.

Four of these five maneuvers occur in situations different from the dawn-dusk orbit orientation used for all earlier orbit-correction maneuvers in the mission, McAdams said. "During the interplanetary cruise phase, we designed similar course-correction maneuvers consisting of two or three separate, closely spaced maneuvers accomplished with different thruster sets. For XM2', we simplified the design and implementation of the final maneuvers, so that each will be executed at a single spacecraft orientation using one thruster set to maximize the orbit altitude change per unit mass of propellant consumed."

The maneuvers are not without risk, McAdams explained. "Increased uncertainty associated with effects on the of Mercury's gravity field at lower-than-ever altitudes, challenges in accurately predicting the spacecraft orbit when the Sun is near the spacecraft-to-Earth communications direction, and implementation of frequent OCMs make for a challenging final few weeks of flight operations," he said. "Depending on how each maneuver goes and on how Mercury's gravity field affects the minimum orbital altitude, we may need to plan and implement a contingency maneuver. Inserting a contingency maneuver will increase the likelihood of the hydrazine propellant running out earlier than planned."

So Far, So Good

This first maneuver went as planned. At the time of this most recent operation, MESSENGER was in an orbit with a closest approach of 11.6 kilometers (7.2 miles) above the surface of Mercury. With a velocity change of 3.07 meters per second (6.87 miles per hour), the spacecraft's four largest monopropellant thrusters (with a small contribution from four of the 12 smallest monopropellant thrusters) nudged the spacecraft to an orbit with a closest-approach altitude of 34.5 kilometers (21.4 miles).

This maneuver also increased the spacecraft's speed relative to Mercury at the maximum distance from Mercury, adding about 1.1 minutes to the spacecraft's eight-hour, 16.5-minute orbit period. OCM-13 used propellant from the small auxiliary fuel tank. This view shows MESSENGER's orientation at the start of the maneuver.

MESSENGER was 185.6 million kilometers (115.4 million miles) from Earth when the 32-second maneuver began at 11:00 a.m. EDT. Mission controllers at APL verified the start of the maneuver 10.3 minutes later, after the first signals indicating spacecraft thruster activity reached NASA's Deep Space Network tracking station in Goldstone, California.

The next , on April 2, will again raise the 's minimum altitude, allowing scientists to continue to collect images and data from MESSENGER's instruments.

Explore further: Innovative use of pressurant extends MESSENGER's mission, enables collection of new data

Related Stories

MESSENGER Surpasses 200,000 Orbital Images of Mercury

February 6, 2014

MESSENGER has now returned more than 200,000 images acquired from orbit about Mercury. The 1996 proposal for the mission promised a return of at least 1,000 images says Robert Gold, MESSENGER's Science Payload Manager. "We ...

MAVEN spacecraft completes first deep dip campaign

February 19, 2015

NASA's Mars Atmosphere and Volatile Evolution has completed the first of five deep-dip maneuvers designed to gather measurements closer to the lower end of the Martian upper atmosphere.

Recommended for you

Revealing the black hole at the heart of the galaxy

January 22, 2019

Including the powerful ALMA into an array of telescopes for the first time, astronomers have found that the emission from the supermassive black hole Sagittarius A* at the center of the galaxy comes from a smaller region ...

A fleeting moment in time

January 22, 2019

The faint, ephemeral glow emanating from the planetary nebula ESO 577-24 persists for only a short time—around 10,000 years, a blink of an eye in astronomical terms. ESO's Very Large Telescope captured this shell of glowing ...

Milky Way's neighbors pick up the pace

January 22, 2019

After slowly forming stars for the first few billion years of their lives, the Magellanic Clouds, near neighbors of our own Milky Way galaxy, have upped their game and are now forming new stars at a fast clip. This new insight ...

How hot are atoms in the shock wave of an exploding star?

January 21, 2019

A new method to measure the temperature of atoms during the explosive death of a star will help scientists understand the shock wave that occurs as a result of this supernova explosion. An international team of researchers, ...

New eclipsing cataclysmic variable discovered

January 21, 2019

Using the Mobile Astronomical System of Telescope-Robots (MASTER), an international team of astronomers has detected a new eclipsing cataclysmic variable. The newfound object, designated MASTER OT J061451.70–272535.5, is ...

The disintegrating exoplanet K2-22b

January 21, 2019

Exoplanet surveys have yielded many surprises over the years, and the discovery of "disintegrating" exoplanets was one of them. These are planets that produce asymmetric shapes in the dips of the light curves seen as they ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.