Operation IceBridge debuts its seventh Arctic campaign

March 23, 2015 by Maria-Jose Vinas Garcia, NASA
NASA's C-130 aircraft getting readied for pressurization tests on March16, 2015 at Wallops Flight Facility, during preparation for the Arctic 2015 Operation IceBridge field campaign. The mission¹s usual research aircraft in the Arctic, a P-3, is currently getting new wings. Credit: NASA/Jefferson Beck

NASA's Operation IceBridge, an airborne survey of polar ice, successfully completed its first Greenland research flight of 2015 on March 19, thus launching its seventh Arctic campaign. This year's science flights over Arctic sea and land ice will continue until May 22.

The mission of Operation IceBridge is to collect data on changing polar land and and maintain continuity of measurements between NASA's Ice, Cloud and Land Elevation Satellite (ICESat) missions. The original ICESat mission ended in 2009, and its successor, ICESat-2, is scheduled for launch in 2017. Operation IceBridge, which began in in 2009, is currently funded until 2019. The planned two-year overlap with ICESat-2 will help scientists validate the satellite's measurements.

The extensive data IceBridge has gathered over the Greenland during its six years of operations have provided an improved picture of the surface, the bed and the internal structures of Greenland's ice sheet and allowed scientists to create more accurate models of glacier contribution to . As for sea ice, IceBridge's measurements of the thickness of sea ice and its snow cover have assisted in improving forecasts for summertime melt, enhanced the understanding of variations in ice thickness distribution from year to year, and updated the climatology of the snow depth over sea ice.

The first part of the Arctic campaign, based in the Thule Air Base in northern Greenland and including a short deployment to Fairbanks, Alaska, will focus on the sea ice in the Arctic Ocean north of Greenland and in the Beaufort and Chukchi Seas north of Alaska.

"As far as the sea ice flight lines go in the Arctic this year, the new thing is that we're not changing things this year," said Jackie Richter-Menge, IceBridge science team co-lead and sea ice researcher with the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory in Hanover, N.H. "We've achieved a pattern of survey flights that is doing its job: it provides good insight into what the thickness distribution of the Arctic cover looks like in the Western Arctic, late in the winter season. This coverage is good both for modelers that are looking to do a prediction of the seasonal extent of the ice cover through the following summer and it also pays a nice complement to the satellite coverage that we're getting from ESA's [European Space Agency] CryoSat-2 satellite."

This year, one of IceBridge's radar instruments, the Multi-Channel Coherent Radar Depth Sounder (MCoRDS), which is operated by the Center for Remote Sensing of Ice Sheets at the University of Kansas in Lawrence, Kansas, will try for the first time to take direct measurements of . Thickness is a key indicator of Arctic sea ice's likelihood to survive the summer melt season, but remote measurements of this characteristic are largely indirect.

NASA’s Operation IceBridge is back in the field, with a twist. Instead of using the P-3 or DC-8 aircraft from previous campaigns, they’ve outfitted a C-130 cargo plane for the trip. Science flights begin this week as the mission studies Arctic sea ice, ice caps, glaciers, and the Greenland Ice Sheet. Credit: NASA/Goddard
"It would really be a wonderful thing to get direct measurements of sea ice thickness because what we have now is an inferred measurement based on how much sea ice is floating above open water", Richter-Menge said. "Direct measurements would increase the level of certainty in the data."

The second part of the Operation IceBridge's 2015 Arctic campaign will be based in Kangerlussuaq, Greenland, and it will focus on surveying ice surface elevation and thickness at several rapidly changing points of the Greenland ice sheet. Afterward, the team will return to Thule for the last phase of the field campaign.

This year, four areas have been added to the list of Operation IceBridge's high priority missions. Among these are the Zachariae Isstrom glacier in northeast Greenland and its neighbor to the north, the 79 N or Nioghalvfjerdsbrae glacier. Both of these rivers of ice have rapidly increased the rates in which they drain land ice to the ocean in the past years.

"That part of Greenland is changing very rapidly and corresponds to a basin below sea level pretty far inland," said Eric Rignot, IceBridge science team co-lead and glaciologist at the University of California, Irvine and NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. "It's a sector that we're paying close attention to because it has the potential to change rapidly and it could have a significant implication for sea level rise in the coming decades."

"As we do every year, we are sampling the four corners of Greenland and the interior regions to complete a rather extensive survey of the ice sheet," Rignot said. "Recent results have shown that this type of survey is good enough to keep track of the total mass loss of the ice sheet from year to year, and also to get details on glaciers that are key players in driving the mass loss to higher values every year."

Operation IceBridge is using a different research aircraft this year, an adapted C-130 Hercules former military plane. The mission's usual ride in the Arctic, a P-3, is getting new wings. Despite both planes having similar sizes and capabilities, mounting IceBridge's array of lasers and radars on an unfamiliar fuselage doesn't come without challenges.

"Any time we install our very extensive suite of sensors, they have to be integrated in the aircraft, which means mechanically mounted in good, stiff mounts, and the radar antennas have to be embedded within the fuselage so that they function adequately without requiring time-consuming aerodynamic modifications to the aircraft," said John Sonntag, Operation IceBridge's Field Team Lead. "It takes a lot of time and mechanical work to get the sensors mounted on the aircraft and to get the electrical interfaces with the crew and the cockpit".

As in previous years, Operation IceBridge will be collaborating with several international research initiatives. In Barrow, Alaska, the C-130 will overfly a sea ice experiment by the Naval Research Laboratory. In a remote outpost in the northeastern Greenland coast, IceBridge will take measurements overlapping those taken from the ground by researchers from the University of Manitoba, Canada. And, weather permitting, NASA's airborne polar laboratory will fly over a drifting sea ice station in the Fram Strait, a passage between Greenland and Svalbard that is the primary region of sea ice export from the Arctic.

"The purpose of our cooperations with other research groups is to understand our own instruments better by comparison to the measurements they're collecting on the ground, primarily snow depth and sea ice thickness," Sonntag said. " We use their detailed measurements collected on the ground to better understand the geographically much wider, but in some cases less detailed we take from the air."

Explore further: NASA begins new season of Arctic ice science flights

More information: For more about Operation IceBridge and to follow this year's campaign, visit: www.nasa.gov/icebridge

Related Stories

NASA begins new season of Arctic ice science flights

March 21, 2013

(Phys.org) —NASA's Operation IceBridge scientists have begun another season of research activity over Arctic ice sheets and sea ice with the first of a series of science flights from Greenland completed on Wednesday.

IceBridge starts with sea ice surveys

March 14, 2014

NASA's Operation IceBridge started the 2014 Arctic campaign with two surveys of sea ice north of Greenland. The two flights follow similar surveys flow in previous years and continue the mission's goals of collecting data ...

NASA's Operation IceBridge in search of ice change in Arctic

April 10, 2014

How much is the polar ice melting, and how are the sheets being affected by climate change? These are some of the questions that NASA's Operation IceBridge seeks to answer. You can see a quick overview of the mission in the ...

Operation IceBridge turns five

October 17, 2014

In May 2014, two new studies concluded that a section of the land-based West Antarctic ice sheet had reached a point of inevitable collapse. Meanwhile, fresh observations from September 2014 showed sea ice around Antarctica ...

IceBridge concludes Arctic field campaign

May 28, 2014

Researchers with NASA's Operation IceBridge have completed another successful Arctic field campaign. On May 23, NASA's P-3 research aircraft left Thule Air Base, Greenland, and returned to Wallops Flight Facility in Virginia ...

NASA scientists watching, studying Arctic changes this summer

August 21, 2014

As we near the final month of summer in the Northern Hemisphere, NASA scientists are watching the annual seasonal melting of the Arctic sea ice cover. The floating, frozen cap that stretches across the Arctic Ocean shrinks ...

Recommended for you

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

The taming of the light screw

March 22, 2019

DESY and MPSD scientists have created high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might ...

Male fish can thank genes for colourful looks

March 22, 2019

Striking traits seen only in males of some species – such as colourful peacock feathers or butterfly wings – are partly explained by gene behaviour, research suggests.

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.