PHYS 19X

System to automatically find a common type
of programming bug significantly
outperforms its predecessors

March 23 2015

Integer overflows are one of the most common bugs in computer
programs—not only causing programs to crash but, even worse,
potentially offering points of attack for malicious hackers. Computer
scientists have devised a battery of techniques to identify them, but all
have drawbacks.

This month, at the Association for Computing Machinery's International
Conference on Architectural Support for Programming Languages and
Operating Systems, researchers from MIT's Computer Science and
Artificial Intelligence Laboratory (CSAIL) will present a new algorithm
for identifying integer-overflow bugs. The researchers tested the
algorithm on five common open-source programs, in which previous
analyses had found three bugs. The new algorithm found all three known
bugs—and 11 new ones.

The variables used by computer programs come in a few standard types,
such as floating-point numbers, which can contain decimals; characters,
like the letters of this sentence; or integers, which are whole numbers.
Every time the program creates a new variable, it assigns it a fixed
amount of space in memory.

If a program tries to store too large a number at a memory address
reserved for an integer, the operating system will simply lop off the bits
that don't fit. "It's like a car odometer," says Stelios Sidiroglou-Douskos,

1/4


https://phys.org/tags/algorithm/
https://phys.org/tags/computer+programs/

PHYS 19X

a research scientist at CSAIL and first author on the new paper. "You go
over a certain number of miles, you go back to zero."

In itself, an integer overflow won't crash a program; in fact, many
programmers use integer overflows to perform certain types of
computations more efficiently. But if a program tries to do something
with an integer that has overflowed, havoc can ensue. Say, for instance,
that the integer represents the number of pixels in an image the program
is processing. If the program allocates memory to store the image, but its
estimate of the image's size is off by several orders of magnitude, the
program will crash.

Charting a course

Any program can be represented as a flow chart—or, more technically, a
graph, with boxes that represent operations connected by line segments
that represent the flow of data between operations. Any given program
input will trace a single route through the graph. Prior techniques for
finding integer-overflow bugs would start at the top of the graph and
begin working through it, operation by operation.

For even a moderately complex program, however, that graph is
enormous; exhaustive exploration of the entire thing would be
prohibitively time-consuming. "What this means is that you can find a
lot of errors in the early input-processing code," says Martin Rinard, an
MIT professor of computer science and engineering and a co-author on
the new paper. "But you haven't gotten past that part of the code before
the whole thing poops out. And then there are all these errors deep in the
program, and how do you find them?"

Rinard, Sidiroglou-Douskos, and several other members of Rinard's
group—researchers Eric Lahtinen and Paolo Piselli and graduate
students Fan Long, Doekhwan Kim, and Nathan Rittenhouse—take a

2/4



PHYS 19X

different approach. Their system, dubbed DIODE (for Directed Integer
Overflow Detection), begins by feeding the program a single sample
input. As that input is processed, however—as it traces a path through
the graph—the system records each of the operations performed on it by
adding new terms to what's known as a "symbolic expression."

"These symbolic expressions are complicated like crazy," Rinard
explains. "They're bubbling up through the very lowest levels of the
system into the program. This 32-bit integer has been built up of all
these complicated bit-level operations that the lower-level parts of your
system do to take this out of your input file and construct those integers
for you. So if you look at them, they're pages long."

Trigger warning

When the program reaches a point at which an integer is involved in a
potentially dangerous operation—Ilike a memory allocation—DIODE
records the current state of the symbolic expression. The initial test input
won't trigger an overflow, but DIODE can analyze the symbolic
expression to calculate an input that will.

The process still isn't over, however: Well-written programs frequently
include input checks specifically designed to prevent problems like
integer overflows, and the new input, unlike the initial input, might fail
those checks. So DIODE seeds the program with its new input, and if it
fails such a check, it imposes a new constraint on the symbolic
expression and computes a new overflow-triggering input. This process
continues until the system either finds an input that can pass the checks
but still trigger an overflow, or it concludes that triggering an overflow is
impossible.

If DIODE does find a trigger value, it reports it, providing developers
with a valuable debugging tool. Indeed, since DIODE doesn't require

3/4



PHYS 19X

access to a program's source code but works on its "binary"—the
executable version of the program—a program's users could run it and
then send developers the trigger inputs as graphic evidence that they may
have missed security vulnerabilities.

Provided by Massachusetts Institute of Technology

Citation: System to automatically find a common type of programming bug significantly
outperforms its predecessors (2015, March 23) retrieved 17 April 2024 from
https://phys.org/news/2015-03-automatically-common-bug-significantly-outperforms.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

4/4


https://phys.org/news/2015-03-automatically-common-bug-significantly-outperforms.html
http://www.tcpdf.org

