Agricultural waste could be used as biofuel

March 26, 2015, University of East Anglia

Straw-powered cars could be a thing of the future thanks to new research from the University of East Anglia (UEA).

A new study pinpoints five of capable of turning agricultural by-products, such as straw, sawdust and corncobs, into bioethanol - a well-known alcohol-based biofuel.

It is estimated that more than 400 billion litres of bioethanol could be produced each year from crop wastage.

The research team say that their findings could help to create biofuel which is more environmentally friendly and ethically sound than other sources because it would make use of waste products.

Processes to generate bioethanol from straw and other by-products are currently complex and inefficient.

This is because high temperatures and acid conditions are necessary in the glucose-release process. But this treatment process causes the waste to breakdown into compounds which are toxic to yeast (furfural and hydroxymethylfurfural) – making fermentation difficult.

One way to avoid these problems is to use genetically modified yeasts, but this new research has found five strains of naturally occurring yeasts which could be used successfully in the .

Lead researcher Dr Tom Clarke, from UEA's School of Biological Sciences, said: "Dwindling oil reserves and the need to develop motor fuels with a smaller carbon footprint has led to the explosion of research into sustainable fuels.

"Bioethanol is a very attractive biofuel to the automotive industry as it mixes well with petrol and can be used in lower concentration blends in vehicles with no modifications. In Brazil, vehicles which run purely on bioethanol have been on the roads since 1979.

"Breaking down agricultural waste has previously been difficult because many strains of yeast necessary for fermentation are inhibited by compounds in the straw. Their toxic effects lead to reduced ."

The research team investigated more than 70 strains of yeast to find the most tolerant. They found five strains which were resistant to the toxic compound furfural, and which produced the highest ethanol yield.

Of the five furfural tolerant strains S. cerevisiae NCYC 3451 displayed the greatest furfural resistance. The genomic lineage of this strain links it to yeast used in the production of the Japanese rice wine Sake.

"These strains represent good candidates for further research, development and use in production," added Dr Clarke.

The research was carried out in collaboration with the Institute of Food Research (IFR) and the National Collection of Yeast Cultures, which is based at the IFR. It was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Department for Environment, Food & Rural Affairs (Defra).

'Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates' is published in the journal Biotechnology for Biofuels.

Explore further: New flavors for lager beer—successful generation of hybrid yeasts

More information: "Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates" Biotechnology for Biofuels 2015, 8:33.  DOI: 10.1186/s13068-015-0217-z

Related Stories

Wine-making yeast shows promise for bioethanol production

May 13, 2010

Researchers from the Stanford University School of Medicine have identified a gene in the yeast Saccharomyces cerevisiae that might be important for ethanol production from plant material, providing insights into the bioethanol ...

Yeast uses CO2 to boost bioethanol production

September 10, 2013

Introducing four genes from bacteria and spinach has enabled researchers at the Delft University of Technology to improve the production of bioethanol with yeast by using carbon dioxide. Their findings were published last ...

Recommended for you

Scientists find evidence of 27 new viruses in bees

June 20, 2018

An international team of researchers has discovered evidence of 27 previously unknown viruses in bees. The finding could help scientists design strategies to prevent the spread of viral pathogens among these important pollinators.

The cells that control the formation of fat

June 20, 2018

Fat cells, or adipocytes, are at the center of nutritional and metabolic balance. Adipogenesis—the formation of mature fat cells from their precursor cells—has been linked to obesity and related health problems such as ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.