Researchers report better solar cells through chemistry

February 11, 2015 by Anne Ju, Cornell University
Researchers report better solar cells through chemistry
Illustration of the stages in the fabrication of CH3NH3PbI3−xClx thin films. Credit: Nature Communications 6, Article number: 6142 doi:10.1038/ncomms7142

In the quest for the perfect solar cell – efficient, thin, reliable and cheap – new Cornell research offers quantifiable insight into the complex chemistry of getting it just right.

A research team that includes Uli Wiesner, the Spencer T. Olin Professor of Materials Science and Engineering, and Lara Estroff, associate professor of materials science and engineering, has demonstrated how to optimize the fabrication conditions of a thin film solar cell widely believed to show promise for photovoltaic applications. Their work was published Jan. 30 in Nature Communications.

Thin film are made by depositing a thin layer of photovoltaic material onto a substrate, such as silicon. The type of films the Cornell researchers made are organic-inorganic metal halide perovskites, which have been widely studied for solar applications over the last several years, according to Wiesner.

The researchers arrived at near-perfect solar cells using a new liquid source, called a non-halide lead acetate. While have improved rapidly in a few short years, some basic properties of the light-absorbing material still weren't well understood. Making the solar material starts with a solution of organic and inorganic molecules, and tuning the solution for smooth, defect-free perovskite films hadn't been perfected.

The researchers started with several kinds of liquid sources made of lead salts and studied the role that certain negatively charged ions - anions - played in the film formation. With the help of the Cornell High Energy Synchrotron Source, they characterized how the perovskites' crystal structures varied depending on which lead salt solution was used. From there they could figure out which was optimal.

The method they settled on for growing the solar cells is also a simple solution-coating, which makes it particularly appealing for commercial applications.

"By choosing the right precursor chemistry and via a simple one-step solution casting process, we obtained perovskite films with a smoothness surpassing that of vapor-deposited films, resulting in record power conversion efficiencies," Wiesner said.

The paper, "Ultrasmooth Organic-Inorganic Perovskite Thin-Film Formation and Crystallization for Efficient Planar Heterojunction Solar Cells," includes work at four universities on three continents: Cornell, with Oxford University and Cambridge University in the United Kingdom, and Nanjing University in China. It is the result of a longstanding collaboration between the Wiesner and Estroff labs at Cornell, and their interaction with Henry Snaith at Oxford University, a world leader in perovskite solar cell device fabrication.

Explore further: Team develops new technique for growing high-efficiency perovskite solar cells

More information: "Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells." Nature Communications 6, Article number: 6142 DOI: 10.1038/ncomms7142

Related Stories

Scientists develop pioneering new spray-on solar cells

August 1, 2014

(Phys.org) —A team of scientists at the University of Sheffield are the first to fabricate perovskite solar cells using a spray-painting process – a discovery that could help cut the cost of solar electricity.

A new stable and cost-cutting type of perovskite solar cell

July 17, 2014

Perovskite solar cells show tremendous promise in propelling solar power into the marketplace. The cells use a hole-transportation layer, which promotes the efficient movement of electrical current after exposure to sunlight. ...

Pinholes are pitfalls for high performance solar cells

January 30, 2015

The most popular next-generation solar cells under development may have a problem – the top layer is full of tiny pinholes, researchers at the Okinawa Institute of Science and Technology Graduate University in Japan have ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

NASA instruments image fireball over Bering Sea

March 22, 2019

On Dec. 18, 2018, a large "fireball—the term used for exceptionally bright meteors that are visible over a wide area—exploded about 16 miles (26 kilometers) above the Bering Sea. The explosion unleashed an estimated 173 ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

marqbons
not rated yet Mar 10, 2015
Why no metrics to show the efficiency gains and what amount are the efficiencies gains? Currently produce photovoltaic cells have at best a 25% efficiency in converting the sun's rays to electrical current. The article states a near-perfect solar cell. Is that physical form or energy conversion? So what are the yields by this process is what should have been stated.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.