Scientists develop novel technique for finding drugs to combat malaria

February 11, 2015 by Deirdre Branley, Albert Einstein College of Medicine
Credit: CDC

Each year nearly 600,000 people—mostly children under age five and pregnant women in sub-Saharan Africa—die from malaria, caused by single-celled parasites that grow inside red blood cells. The most deadly malarial species—Plasmodium falciparum—has proven notoriously resistant to treatment efforts. But thanks to a novel approach developed by scientists at Albert Einstein College of Medicine of Yeshiva University and described in the January 20 online edition of ACS Chemical Biology, researchers can readily screen thousands of drugs to find those potentially able to kill P. falciparum.

Scientists have known for more than a decade that malaria parasites have an Achilles heel: Like all cells, they require two key building blocks—purines and pyrimidines—to synthesize their DNA and RNA. But malaria parasites can't synthesize purines on their own. Instead, they must import purines from the host that they invade. A parasite protein called PfENT1 transports purines from blood cell into the parasites. So drugs that block PfENT1 could conceivably kill the parasites by depriving them of purines they need—but an experimental approach for identifying PfENT1 inhibitors didn't exist, until now.

Einstein's Myles Akabas, M.D., Ph.D., developed a novel yeast-based high-throughput assay for identifying inhibitors of the PfENT1 transporter. Dr. Akabas worked with two MSTP students in his lab (I.J. Frame and Roman Deniskin) as well as colleagues at Einstein (Drs. Ian Willis and Robyn Moir) and Columbia University (Drs. Donald Landry and David Fidock). The researchers used their technique to screen 64,560 different compounds. They identified 171 potential antimalarial drugs. Studies of nine of the most potent drugs showed that they kill P. falciparum parasites in laboratory culture.

"We've shown that the PfENT1 transporter is a potential drug target for developing novel antimalarial drugs," said Dr. Akabas, senior author of the ACS Chemical Biology paper and a professor of physiology & biophysics, of medicine and in the Dominick P. Purpura Department of Neuroscience at Einstein. "By using our rather simple approach, scientists could create similar high-throughput screens to identify inhibitors for killing other that rely on transporters to import essential nutrients."

Explore further: Malaria-in-a-dish paves the way for better treatments

Related Stories

Malaria-in-a-dish paves the way for better treatments

February 5, 2015

Massachusetts Institute of Technology (MIT) researchers have engineered a way to use human liver cells, derived from induced pluripotent stem cells, to screen potential antimalarial drugs and vaccines for their ability to ...

New strategy emerges for fighting drug-resistant malaria

January 15, 2014

Malaria is one of the most deadly infectious diseases in the world today, claiming the lives of over half a million people every year, and the recent emergence of parasites resistant to current treatments threatens to undermine ...

Cancer-fighting drugs might also stop malaria early

August 25, 2014

Scientists searching for new drugs to fight malaria have identified a number of compounds—some of which are currently in clinical trials to treat cancer—that could add to the anti-malarial arsenal.

Nanotechnology against malaria parasites

December 9, 2014

Malaria parasites invade human red blood cells, they then disrupt them and infect others. Researchers at the University of Basel and the Swiss Tropical and Public Health Institute have now developed so-called nanomimics of ...

Fast-changing genes help malaria to hide in the human body

December 18, 2014

A study of the way malaria parasites behave when they live in human red blood cells has revealed that they can rapidly change the proteins on the surface of their host cells during the course of a single infection in order ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

NASA instruments image fireball over Bering Sea

March 22, 2019

On Dec. 18, 2018, a large "fireball—the term used for exceptionally bright meteors that are visible over a wide area—exploded about 16 miles (26 kilometers) above the Bering Sea. The explosion unleashed an estimated 173 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.