Monitoring the real-time deformation of carbon nanocoils under axial loading

February 18, 2015, Toyohashi University of Technology
Real-time observation of CNC tensile tests and SIM images of variations in the coil geometry over time. Credit: Toyohashi University of Technology

Carbon nanocoils (CNCs) composed of helical shaped carbon nanofibers have potential applications including mechanical springs and nano-solenoids. There are some reports which measure the spring constant of CNCs.

However, the CNC response to prolonged stretching, which includes initial elastic elongation to large-scale deformation in the plastic regime and subsequent tensile fracture followed by post-fracture contraction and the release of the applied strain, remains undetermined. It is crucially important to secure real-time measurements of CNC deformation beyond the linear elastic regime.

Here, Taiichiro Yonemura and colleagues at Toyohashi University of Technology describe the real-time deformation data that exhibited sequential change in CNC geometry after each coil was subjected to a uniaxial load at a constant rate.

CNC tensile tests were conducted as follows: The CNCs were installed into an FIB system with a tungsten (W) probe with a 500 nm tip diameter and the W probe moved until it adhered to CNC using Pt ion beam whereas the Si ion beam cut the CNC bottom; then the CNC-adhered W probe approaches a spring table substrate surface, until the CNC was almost perpendicularly to the substrate. The tensile tests were performed on nine CNCs by gradually changing the distance between the substrate and W probe.

The real-time data of a CNC tensile test performed using a spring table in the FIB chamber was monitored. A series of three scanning ion microscopy (SIM) images offers visualization of the geometric evolution of the CNC under a tensile load. These images were captured in the free state (t = 0 s), the maximum elongation point (t = 910 s), and a post-fracture state (t = 960 s).

To determine the elastic boundary of the CNCs, we examined the relationship between the applied strain and residual elongation ratios of CNCs after the load release. The result indicates that the CNCs were in the elastic region for elongations up to approximately 15% strain.

Tensile tests, performed on nine different CNCs, revealed that the average CNC spring constant was 1.8 N/m. Using a theoretical equation for the design of macroscopic springs, the shear moduli of the nine CNCs were estimated to be 6 GPa on average. These results may serve as a milestone for developing CNC-based applications in the future.

Explore further: Scientists apply new graph programming method for evolving exascale applications

More information: Taiichiro Yonemura, Yoshiyuki Suda, Hiroyuki Shima, Yasushi Nakamura, Hideto Tanoue, Hirofumi Takikawa, Hitoshi Ue, Kazuki Shimizu, and Yoshito Umeda, Real-time deformation of carbon nanocoils under axial loading, Carbon, 83, 183-187 (2015). dx.doi.org/10.1016/j.carbon.2014.11.034

Related Stories

Highly precise mirrors for in-depth insights into space

May 23, 2014

Thanks to simulation and control technology from Siemens, astronomers will be able to gaze even further into space in the future. According to the current issue of the Siemens research magazine Pictures of the Future, the ...

What is Hooke's Law?

February 16, 2015

The spring is a marvel of human engineering and creativity. For one, it comes in so many varieties – the compression spring, the extension spring, the torsion spring, the coil spring, etc. – all of which serve different ...

Recommended for you

Bright colors produced by laser heating

January 15, 2019

Most of the colors on today's paper and fabric are made using dyes or pigments. But colors can also be produced by modifying a material's surface at the nanoscale, causing the surface to reflect or scatter different frequencies ...

Pore size influences nature of complex nanostructures

January 15, 2019

Building at the nanoscale is not like building a house. Scientists often start with two-dimensional molecular layers and combine them to form complex three-dimensional architectures. And instead of nails and screws, these ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.