Better measurements of single molecule circuits

February 18, 2015 by Andy Fell, UC Davis
Nanotechnology: Better measurements of single molecule circuits
A single molecule of hexane (six carbon atoms) with sulfur atoms at each end, between two gold electrodes. A new technique invented at UC Davis allows better measurements of the properties of such circuits and could boost research in nanotechnology. Credit: Josh Hihath/UC Davis

It's nearly 50 years since Gordon Moore predicted that the density of transistors on an integrated circuit would double every two years. "Moore's Law" has turned out to be a self-fulfilling prophecy that technologists pushed to meet, but to continue into the future, engineers will have to make radical changes to the structure or composition of circuits. One potential way to achieve this is to develop devices based on single-molecule connections.

New work by Josh Hihath's group at the UC Davis Department of Electrical and Computer Engineering, published Feb. 16 in the journal Nature Materials, could help technologists make that jump. Hihath's laboratory has developed a method to measure the conformation of single molecule "wiring," resolving a clash between theoretical predictions and experiments.

"We're trying to make transistors and diodes out of single molecules, and unfortunately you can't currently control exactly how the molecule contacts the electrode or what the exact configuration is," Hihath said. "This new technique gives us a better measurement of the configuration, which will provide important information for theoretical modeling."

Until now, there has been a wide gap between the predicted electrical behavior of single molecules and experimental measurements, with results being off by as much as ten-fold, Hihath said.

Hihath's experiment uses a layer of alkanes (short chains of carbon atoms, such as hexane, octane or decane) with either sulfur or on each end that allow them to bind to a gold substrate that acts as one electrode. The researchers then bring the gold tip of a Scanning Tunneling Microscope towards the surface to form a connection with the molecules. As the tip is then pulled away, the connection will eventually consist of a single-molecule junction that contains six to ten (depending on the molecule studied at the time).

By vibrating the tip of the STM while measuring electrical current across the junction, Hihath and colleagues were able to extract information about the configuration of the .

"This technique gives us information about both the electrical and mechanical properties of the system and tells us what the most probable configuration is, something that was not possible before," Hihath said.

The researchers hope the technique can be used to make better predictions of how molecule-scale circuits behave and design better experiments.

Explore further: Visualizing interacting electrons in a molecule

More information: Nature Materials, www.nature.com/nmat/journal/va … t/full/nmat4216.html

Related Stories

Where are helium atoms in molecule?

December 10, 2014

Frankfurt physicists have once again contributed to resolving a disputed matter of theoretical physics. Science has long since known that, contrary to the old school of thought, helium forms molecules of two, three or even ...

Electronic switches on the molecular scale

November 25, 2014

A molecular electronic switch is a junction created from individual molecules that can alternate between two or more stable states, making the switch act as a conductor or an insulator. These switches show promise for future ...

Half spheres for molecular circuits

February 16, 2015

Corannulene is a carbon molecule with a unique shape (similar to the better known fullerene) and promising properties. A team of scientists from SISSA and the University of Zurich carried out computer simulations of the molecule's ...

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.