Evolution of a natural gene network explored by Yale researchers

Evolution of a natural gene network explored by Yale researchers
Credit: AI-generated image

Scientists have extensive knowledge of how mutations of single genes during evolution can have a fitness cost or benefit for the host organism. However, genes are often embedded into complex regulatory networks. The role of these gene networks in evolution is less well understood.

Yale researchers systematically assessed how the activity of a natural gene network evolved and came up with some surprising insights. Genes in networks are regulated by bits of genetic material called promoters. So the Yale team combinatorially swapped promoters of a sugar metabolization network between two species of yeast and then methodically analyzed the effects on the .

They found that swapping the promoter GAL80, which mediates a , substantially altered network activity and the fitness profiles of yeast cells.

"We have little empirical evidence about how evolution occurs at the gene network level," says Murat Acar, professor of molecular, cellular and developmental biology, and of physics, a researcher in the Systems Biology Institute at West Campus, and senior author of the study. "Elucidating the role played by negative-feedback regulation on cross-species network activity differences adds to our understanding."

The work also offers an example of how quantitative systems biology approaches can help reveal key principles of gene network evolution, which will be essential for our fight against such pressing public health problems as antibiotic resistance, Acar said.

The findings are reported Feb. 11 in the journal Nature Communications.

Journal information: Nature Communications

Provided by Yale University

Citation: Evolution of a natural gene network explored by Yale researchers (2015, February 13) retrieved 8 December 2023 from https://phys.org/news/2015-02-evolution-natural-gene-network-explored.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Quest to unravel mysteries of our gene network


Feedback to editors