Supercomputer simulations yield method for predicting behavior of new concrete formulas

January 22, 2015 by Chad Boutin, National Institute of Standards and Technology

Just because concrete is the most widely used building material in human history doesn't mean it can't be improved. A recent study conducted by researchers from the National Institute of Standards and Technology (NIST), the University of Strasbourg and Sika Corporation using Department of Energy (DOE) Office of Science supercomputers has led to a new way to predict concrete's flow properties from simple measurements.

Concrete begins as a thick pasty fluid containing innumerable particles in suspension that can, ideally, flow into a space of nearly any shape, where it hardens into a durable, rock-like state. Its initial flexibility combined with its eventual strength has made it the material of choice for building everything from the ancient Roman Colosseum to the foundations of countless modern bridges and skyscrapers.

But is not without its problems. For example, when concrete is pumped, it can jam in pipes, leading to time and cost overruns during construction. The particles can settle out, leading to structural problems after the concrete hardens. And a significant amount of energy is needed to create the cement that reacts with water to produce hardened concrete. This critical binding agent is manufactured at high temperatures in a kiln, a process that generates a great deal of carbon dioxide, a greenhouse gas. According to the World Business Council for Sustainable Development, worldwide cement manufacture is estimated to account for at least 5 percent of humanity's .

The industry can develop less energy-intensive concrete mixtures by replacing some of the cement with alternative materials like fly ash. However, these alternatives can require expensive chemical additives, and they also can have a range of effects on concrete flow. Ideally, the industry would like to tailor the use of these , thus helping to assure the greatest use of alternative materials.

"We'd like to be able to design concrete that performs better on the job and doesn't demand so much energy to manufacture," says NIST computer scientist William George. "But what should we make it from? And what can we replace cement with? The answers will affect its properties. So we realized we needed to learn more about how suspensions work."

While it's a simple goal to describe, accomplishing it demanded some complex math and physics, and at the same time, an enormous amount of computer power to study how all the particles and fluid react as they are mixed. The NIST team was granted an INCITE Award that provided more than 110 million core hours at the Argonne Leadership Computing Facility. The ALCF supercomputers allowed them to simulate how a suspension would change if one or more parameters varied—the number of suspended particles, for example, or their size.

Suspensions have a remarkable property: Plotting two parameters—viscosity vs. shear rate (the latter refers to how neighboring layers of the fluid change velocity as it flows through a pipe)—always generates the same shaped curve as plotting them for the suspending fluid alone without added particles. This is true no matter what fluid is used. The curve just sits on a different location on the X-Y axis, as though someone had pushed it upwards or off to the side without otherwise altering its shape.

What the team unexpectedly found was the amount that the curves had to be shifted could be predicted based on the microscopic shear rates that existed between neighboring particles. Experiments at the University of Strasbourg confirmed the simulated results, which allowed the team to come up with a general theory of suspensions' properties.

"So now if you have a suspension that is made with a fluid that behaves a bit differently, you can still predict what its properties will be," George says. "You just have to measure the properties of the fluid that the particles are placed in, and you predict how the fresh concrete will behave."

The results should help accelerate the design of a new generation of high-performance and eco-friendly cement-based materials by reducing time and costs associated with R&D, George adds.

NIST is also using this new knowledge to create Standard Reference Materials for industrial researchers to calibrate concrete rheometers—instruments used to measure the flow of complex fluids—for material development. Ultimately, this could help expand the use of alternative materials. While it is not yet known whether these alternatives will fit the bill, the team's research could eventually help industry researchers zero in on the best new recipes.

Explore further: Experts propose research priorities for making concrete 'greener'

More information: M. Liard, N.S. Martys, W.L. George, D. Lootens and P. Hebraud. "Scaling laws for the flow of generalized Newtonian suspensions." Journal of Rheology, 58, 1993 (Nov/Dec 2014 issue), DOI: 10.1122/1.4896896

Sika Corporation: usa.sika.com/

Related Stories

Crush those clinkers while they're hot

January 13, 2015

Making cement is a centuries-old art that has yet to be perfected, according to researchers at Rice University who believe it can be still more efficient.

Limestone powder enhances performance of 'green' concrete

September 4, 2013

Adding limestone powder to "green" concrete mixtures—those containing substantial amounts of fly ash, a byproduct of coal-burning power plants—can significantly improve performance, report researchers from the National ...

Hard facts lead to 'green' concrete

September 26, 2014

The international team of scientists has created computational models to help concrete manufacturers fine-tune mixes for general applications.

Recommended for you

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

Toward ultrafast spintronics

January 21, 2019

Electronics have advanced through continuous improvements in microprocessor technology since the 1960s. However, this process of refinement is projected to stall in the near future due to constraints imposed by the laws of ...

Classic double-slit experiment in a new light

January 18, 2019

An international research team led by physicists from the University of Cologne has implemented a new variant of the basic double-slit experiment using resonant inelastic X-ray scattering at the European Synchrotron ESRF ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.