
 

Origami—mathematics in creasing

January 7 2015, by Thomas Hull

  
 

  

Paper folding may look like art, but it’s all about the math. Credit: Mina, CC BY-
NC-ND

Origami is the ancient Japanese art of paper folding. One uncut square
of paper can, in the hands of an origami artist, be folded into a bird, a
frog, a sailboat, or a Japanese samurai helmet beetle. Origami can be
extraordinarily complicated and intricate.

The art of origami has been going through a renaissance over the past 30
years, with new designs being created at ever-increasing levels of
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https://www.flickr.com/photos/cavemanboon/3099233515/
https://phys.org/tags/origami/
http://www.langorigami.com


 

complexity. It's no coincidence that this rise in origami complexity has
emerged at the same time scientists, mathematicians and origami artists
themselves have been discovering more and more of the mathematical
rules that govern how paper folding works.

Indeed, if you take an origami model, of a bird for example, and
carefully unfold it, you'll see the pattern of creases that act as a blueprint
for the model. This crease pattern contains the secret of how the paper is
able to fold into the bird – and that secret is math. In theory, we could
use this crease pattern to determine exactly how the paper should fold up
and what shape it will form – if, that is, we understood all the secret
rules of paper folding.

Reading between the creases

At heart, mathematics is about understanding the rules and patterns of
the universe, be they patterns in numbers, in the stock market, or in
nature. In the case of origami, we need to look at the geometry of the
crease pattern, where the lines intersect, what angles they form, and in
what direction the creases fold: are they valley creases or mountain
creases?
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A mathematical simulation of a single vertex folding, with its projection onto a
sphere. Credit: Tom Hull

Most traditional origami models fold flat, meaning you could press the
model in a book without crumpling it. It turns out that the crease patterns
of flat origami models have some very special properties. One of them is
called Maekawa's Theorem: at every vertex where creases intersect in a
flat origami crease pattern, the difference between the number of
mountain and valley creases is always two. So, at a vertex you could have
5 mountains and 3 valleys, but never 6 mountains and 2 valleys, for
example.
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Beyond art to applications

In the 1970s, Japanese astrophysicist Koryo Miura invented his Miura
map fold, also known as the Miura-ori. It's an example of an origami
tesselation, where one shape is repeated over and over, with no gaps,
across a whole surface. In this case, the crease pattern is a tiling of
parallelograms laid out so the lines of the tiling also obey the rules of flat-
folded origami. Dr. Miura chose the mountains and valleys of his crease
pattern so that the model would open and close very easily.

This crease pattern makes a very good alternative for folding a map,
since it opens and closes so easily. But Dr. Miura used this design as a
way to deploy large solar panels into outer space. Think of each
parallelogram as a solar cell, all of which are then connected by hinges.
The array can then fold up into a small package to be put on a space
satellite before being launched on a rocket. Once in space it could be
opened by a simple expansion rod without the help of human hands.

The Miura map fold has inspired a lot of researchers to investigate how
it works, its properties, and how it can be used. For example, I've
worked with a team including researchers from the University of
Massachusetts-Amherst and Cornell University to study the Miura map
fold as a mechanical device; how much force is required to compress the
fold, and how much does it spring back when released? In Science, we
reported how we can change this behavior by introducing defects into
the Miura map fold, say by poking some of the vertices the other way.
An example is shown below.
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http://en.wikipedia.org/wiki/Miura_fold
http://en.wikipedia.org/wiki/Miura_fold
http://mars.wne.edu/~thull/
http://blogs.umass.edu/csantang/2014/08/07/new-paper-origami-meta-materials/
http://blogs.umass.edu/csantang/2014/08/07/new-paper-origami-meta-materials/
https://cohengroup.lassp.cornell.edu/research.php?project=10019
http://dx.doi.org/10.1126/science.1252876


 

  

The crease pattern for the classic flapping bird model, with mountain and valley
creases indicated. Credit: Tom Hull

Our group has also been studying self-folding. We've made materials
that fold themselves, which has been a topic of interest to other groups 
as well. Ryan Hayward's group at the Conte National Center for Polymer
Research has developed a way to make microscopic gel sheets swell
along crease lines when heated. Their methods can make a microscopic
crane:

This crane could be the smallest folded crane ever made! The polymer
self-folding gel can make very complicated designs, like this three-
dimensional octahedron-tetrahedron truss tessellation:
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https://www.youtube.com/watch?v=Pg8VAVWkz3k
http://wyss.harvard.edu/viewpressrelease/162
http://www.pse.umass.edu/faculty/researchgroup/hayward/group
http://www.pse.umass.edu/
http://www.pse.umass.edu/
http://en.wikipedia.org/wiki/Space_frame


 

  

The Miura map fold crease pattern folds smoothly into a flat package. Credit:
Tom Hull

Such tiny self-folding gel objects might someday be used in bio-
engineering. Imagine a toxic anticancer drug being enclosed in a self-
folding origami ball, where the ball is programmed to unfold only when
it comes in contact with a tumor. Then the drug can be delivered exactly
to the tumor without poisoning other parts of the patient's body.

None of these origami applications would be possible without
understanding the mathematical rules behind origami. It is a great
example of how math – and origami – can be found in unexpected
places.

  
 

  

The Miura map fold in action.
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An origami-inspired deployable solar array developed by Brigham Young
University, NASA Jet Propulsion Laboratory, and Lang Origami. This one is not
directly based on the Miura map. Credit: Brigham Young University
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The Miura map fold with defects introduced. The defects lead to fewer pleats at
the bottom than at the top. Credit: Jesse Silverberg and the Itai Cohen Group at
Cornell University
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A self-folded polymer crane, just a fraction of a millimeter in width. Credit: Jun-
Hee Na, Hayward Research Group, UMass Amherst
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Octahedron tetrahedron truss confocal microscopy image Credit: Jun-Hee Na,
Hayward Research Group, UMass Amherst

This story is published courtesy of The Conversation (under Creative
Commons-Attribution/No derivatives).

Source: The Conversation
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