New material, technique efficiently produce hydrogen, syngas fuel feedstock

January 15, 2015 by Matt Shipman, North Carolina State University
Researchers have developed a new catalytic compound that can be used to efficiently produce hydrogen and syngas. Credit: Feng He

A team of chemical engineering researchers has developed a technique that uses a new catalyst to convert methane and water into hydrogen and a fuel feedstock called syngas with the assistance of solar power. The catalytic material is more than three times more efficient at converting water into hydrogen gas than previous thermal water-splitting methods.

"We're excited about the new material and process because it converts , inexpensive and clean, renewable into valuable syngas and hydrogen fuels," says Feng He, a Ph.D. student in the lab of Prof. Fanxing Li at NC State and lead author of two articles describing the material and process.

Hydrogen may be an important source of , and the cleanest way to produce is to split water into hydrogen and oxygen – but researchers have struggled to develop a cost-effective water-splitting technique. Syngas is a mixture of carbon monoxide and hydrogen that is used as a feedstock for commercial processes that produce synthetic diesel fuels, olefins, and methanol.

The technique hinges on a new catalytic material that is a composite of and lanthanum strontium iron oxide, also known as LSF.

Researchers have long known that iron oxide can be used as a catalyst for thermal water splitting, but it is not very efficient. The addition of LSF significantly improves iron oxide's activity, making it far more efficient. Using the new composite, the researchers were able to convert 77 percent of the water they used (in the form of steam) into hydrogen. The previous best conversion mark for thermal water-splitting was around 20 percent.

Schematic of the hybrid process for liquid fuel and hydrogen generation. Credit: Feng He

"We're optimistic that commercial utilization of this technique could promote the efficient usage of solar energy and domestic natural gas, produce relatively low carbon dioxide emissions while making liquid transportation fuel, and generate low cost, high purity hydrogen," He says.

Broadly speaking, here's how the new technique works.

Methane is injected into a reactor that is heated with solar energy. That chamber contains the catalytic composite, which reacts with the methane to produce syngas and carbon dioxide. This process "reduces" the composite particles, stripping them of oxygen. The syngas is removed from the system and the reduced composite particles are diverted into a second reactor.

High-temperature steam is then pumped into the second reactor, where it reacts with the reduced composite particles to produce gas that is at least 97 percent pure (which is good). This process also reoxygenates the composite particles, which can then be re-used with the methane, starting the cycle all over again.

Circulating bed reactor for the hybrid process. Credit: Feng He

Initially, the steam has to be produced with an external energy source, but once the cycle is initiated the chemical reactions produce enough heat to convert water into steam without an external heat source.

"We've created the catalytic particles and conducted every step of this process, but only in separate batches," He says. "We're now in the process of building a circulating bed reactor to operate this entire cycle in a continuous mode in real world conditions.

"Next steps include fine-tuning the catalytic compound to make it better and cheaper, improving the overall process, and developing better reactors."

Explore further: A long-lived catalyst facilitates the first steps toward small-scale hydrogen generator

More information: "Perovskite promoted iron oxide for hybrid water-splitting and syngas generation with exceptional conversion." Energy Environ. Sci., 2015, Advance Article DOI: 10.1039/C4EE03431G

"A hybrid solar-redox scheme for liquid fuel and hydrogen coproduction." Energy Environ. Sci.,, 2014,7, 2033-2042 DOI: 10.1039/C4EE00038B

Related Stories

New catalyst converts carbon dioxide to fuel

July 30, 2014

Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas, a precursor of gasoline and other energy-rich products, bringing ...

New method for producing clean hydrogen

May 21, 2013

Duke University engineers have developed a novel method for producing clean hydrogen, which could prove essential to weaning society off of fossil fuels and their environmental implications.

Recommended for you

A protein that self-replicates

February 22, 2018

ETH scientists have been able to prove that a protein structure widespread in nature – the amyloid – is theoretically capable of multiplying itself. This makes it a potential predecessor to molecules that are regarded ...

Newly designed molecule binds nitrogen

February 22, 2018

Wheat, millet and maize all need nitrogen to grow. Fertilisers therefore contain large amounts of nitrogenous compounds, which are usually synthesised by converting nitrogen to ammonia in the industrial Haber-Bosch process, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Jan 16, 2015
Just in time for fuel cell autos. If otto finds out I have the rights to a PEM cell he will cry.

Fuel cells belong in stationary configurations,too. I worked with the Executive VP of Toyota to find stationary applications, but it was way too preliminary. For example, they should find uses in refineries and electronics manufacture, where large and relatively cheap hydrogen is present.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.