Fractional quantum Hall effect: Experimental progress and quantum computing applications

January 6, 2015, Science China Press
First experimental observation of 5/2 FQHE state. Credit: ©Science China Press

The Hall effect, discovered in 1879, is observable when a Hall voltage perpendicular to the current is produced across a conductor under a magnetic field. Although the Hall effect was discovered in a sheet of gold leaf by Edwin Hall, this effect does not require a two-dimensional condition.

A century later, in 1980, the quantum Hall effect (QHE) was observed in two-dimensional electron gas (2DEG) system. The QHE occurs when a two-dimensional electron gas is exposed to a very low temperature and a very high . The classical Hall resistance becomes quantized numbers in QHE. Usually, electrons are confined in a GaAs-AlGaAs interface potential well, formed by the two semiconductors with band offset.

The fractional quantum Hall effect (FQHE) was discovered in 1982. FQHE has almost the same characteristic as the QHE, with the Hall resistance quantized as h/e2 over a fraction. The first fraction observed is 1/3.

Many theoretical and experimental efforts continue in the field of the FQHE. Scientists at Peking University's International Center for Quantum Materials outline previous research and recent discoveries and technical developments in the field in a new paper , "Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene," published in the Beijing-based journal National Science Review.

The 5/2 filling factor state is special for being an even denominator state, since most of the previously observed fractional quantum Hall states have odd denominator fractions. The observation of the 5/2 state demands new theoretical concepts. This even denominator fractional quantum Hall state can be viewed as a new testing ground to study complicated many-body physics involving simple electrons.

Their paper covers the progress of the 5/2 state in terms of energy gap, spin polarization study, fractional charge and statistics. The relationship between the energy gap and other experimental parameters, such as electron density, mobility, sample quality, are outlined.

The confusing results of and the interference experiments are also reviewed. The Peking University scientists acknowledge in the paper that the "5/2 state needs extra efforts to determine its ground state wave function."

The paper's co-authors likewise survey recent progress in researching FQHE in monolayer graphene. Graphene has gained increasing scientific attention due to its peculiar band structure, corresponding two-dimensional massless Dirac-like excitations and great application potential. The quantum Hall effect in graphene has even been found at room temperature, which makes QHE-based applications more attractive and likely to become a focus of research in the future.

The FQHE has been observed in graphene since 2009. Typically this effect has been studied in semiconductors and graphene as a new platform for two-dimensional electrons. FQHE in graphene provides an interesting platform for experiments in many-body physics.

Explore further: Tunable quantum behavior observed in bilayer graphene

More information: Xi Lin, Ruirui Du, Xincheng Xie. "Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene". National Science Review, (December 2014) 1 (4): 564?579 nsr.oxfordjournals.org/content/1/4/564.full

Related Stories

From pencil marks to quantum computers

July 3, 2014

Pick up a pencil. Make a mark on a piece of paper. Congratulations: you are doing cutting-edge condensed matter physics. You might even be making the first mark on the road to quantum computers, according to new Perimeter ...

Recommended for you

On the rebound

January 22, 2018

Our bodies have a remarkable ability to heal from broken ankles or dislocated wrists. Now, a new study has shown that some nanoparticles can also "self-heal" after experiencing intense strain, once that strain is removed.

Nanoparticle gel controls twisted light with magnetism

January 22, 2018

"Help me, Obi Wan Kenobi. You're my only hope." For many of those around at the release of Star Wars in 1977, that scene was a first introduction to holograms—a real technology that had been around for roughly 15 years.

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.