Fossil find sheds new light on evolution of reptiles

January 15, 2015 by Blake Eligh, University of Toronto
Fossil find sheds new light on evolution of reptiles
The new ancient reptile has been named Erpetonyx arsenaultorum. Credit: Sean Modesto, CBU

A lucky find by a young boy on a Prince Edward Island beach has revealed important information about the early evolution of reptiles, according to new research from the University of Toronto Mississauga.

In 1995, father and son Ed and Mike Arsenault were exploring the beach at Cape Egmont, Prince Edward Island, when they spotted a fossil embedded in the red sandstone. They pried the rock from the earth to discover a nearly complete fossil of a small animal. After unsuccessful attempts to sell the find, Mike stashed the fossil under his bed where it stayed until years later when an endowment allowed the Royal Ontario Museum to acquire it in 2004.

In a new study published in the January edition of the Proceedings of Royal Society B: Biological Sciences, study co-author and UTM professor Robert Reisz and his team describe the Arsenault find, Erpetonyx arsenaultorum, which turns out to be an entirely new genus and species of reptile that lived millions of years ago, and the first from the Canadian Maritimes in over four decades.

Early reptiles evolved during the Carboniferous era when much of this part of the world was covered in swampy forests. Previous data showed that parareptiles (from which turtles originate) had one ancestor that survived the Carboniferous era, however a dearth of specimens leaves large gaps in our understanding of this period.

The Arsenault fossil is the only specimen from this part of the Carboniferous era, and the only reptile specimen from that time. Named in honour of its discoverers, Erpetonyx arsenaultorum adds new branches to the early reptilian family tree, increasing the number of reptiles known to be living at the time.

"Our analysis of the interrelationships of early reptiles reveals that our new species is the closest relative of a enigmatic group called bolosaurid parareptiles," says Reisz, who adds that the find sheds new light on the diversity of reptiles at the end of the Carboniferous period. "It suggests reptiles were 80 per cent more diverse than previously thought," he says.

Erpetonyx arsenaultorum has no living relatives, Reisz says, adding that that the 25-com-long lizard would have looked very similar to a modern-day desert iguana. It had clawed feet and small peg-like teeth. "We presume that it was a carnivore and insectivore, eating arthropods and small vertebrates," he says.

It's a lucky find. "Small fossils like these are easily overlooked. They are also less likely to be preserved in the fossil record than those of larger species," Reisz says of the . "This is one of the nicest looking, most complete of the Carboniferous period."

Explore further: Canadian fossil discoveries offer clues to early evolution in upper North America

More information: "The oldest parareptile and the early diversification of reptiles." Proc. R. Soc. B:2015282 20141912; DOI: 10.1098/rspb.2014.1912. Published 14 January 2015

Related Stories

Ancient reptile birth preserved in fossil

February 12, 2014

Ichthyosaur fossil may show the earliest live birth from an ancient Mesozoic marine reptile, according to a study published February 12, 2014 in PLOS ONE by Ryosuke Motani from the University of California, Davis, and colleagues.

Recommended for you

Why war is a man's game

August 15, 2018

No sex differences in attitudes or abilities are needed to explain the near absence of women from the battlefield in ancient societies and throughout history, it could ultimately all be down to chance, say researchers at ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.