3-D enzyme model provides new tool for anti-inflammatory drug development

January 26, 2015, University of California - San Diego
3-D enzyme model provides new tool for anti-inflammatory drug development

Phospholipase A2 (PLA2) enzymes are known to play a role in many inflammatory diseases, including asthma, arthritis and atherosclerosis. It then stands to reason that PLA2 inhibitors could represent a new class of anti-inflammatory medication. To better understand PLA2 enzymes and help drive therapeutic drug development, researchers at University of California, San Diego School of Medicine developed 3D computer models that show exactly how two PLA2 enzymes extract their substrates from cellular membranes. The new tool is described in a paper published online the week of Jan. 26 by the Proceedings of the National Academy of Sciences.

"This is the first time and supercomputing technology have been used to visualize an interacting with a membrane," said Edward A. Dennis, PhD, Distinguished Professor of Pharmacology, chemistry and biochemistry and senior author of the study. "In doing so, we discovered that binding the membrane triggers a conformational change in PLA2 enzymes and activates them. We also saw several important differences between the two PLA2 enzymes we studied—findings that could influence the design and development of specific PLA2 inhibitor drugs for each enzyme."

The computer simulations of PLA2 enzymes developed by Dennis and his team, including first author Varnavas D. Mouchlis, PhD, show the specific molecular interactions between PLA2 enzymes and their substrate, , as the enzymes suck it up from .

Make no mistake, though—the animations of PLA2 in action are not mere cartoons. They are sophisticated molecular dynamics simulations based upon previously published deuterium exchange mass spectrometry (DXMS) data on PLA2. DXMS is an experimental laboratory technique that provides molecular information about the interactions of these enzymes with membranes.

"The combination of rigorous experimental data and in silico [computer] models is a very powerful tool—the experimental data guided the development of accurate 3D models, demonstrating that these two scientific fields can inform one another," Mouchlis said.

The first 3D computer model of phospholipass A2 enzyme extracting its substrate from cell membrane. Credit: Dennis Lab, UC San Diego School of Medicine

The liberation of arachidonic acid by PLA2 enzymes, as shown in these simulations, sets off a cascade of molecular events that result in inflammation. Aspirin and many other anti-inflammatory drugs work by inhibiting enzymes in this cascade that rely on PLA2 enzymes to provide them with arachidonic acid. That means PLA2 enzymes could potentially also be targeted to dampen inflammation at an earlier point in the process.

Explore further: Inhibiting inflammatory enzyme after heart attack does not reduce risk of subsequent event

More information: Membranes serve as allosteric activators of phospholipase A2, enabling it to extract, bind, and hydrolyze phospholipid substrates, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1424651112

Related Stories

Darapladib falls short in chronic coronary heart disease

March 31, 2014

The novel inflammation inhibitor darapladib showed no primary-endpoint advantage over placebo in patients with chronic coronary heart disease treated with a high level of background care, although it did suggest possible ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.