Understanding cellular ageing

January 29, 2015, Biotechnology and Biological Sciences Research Council
A senescent cell nucleus with dense nuclear domains (SAHF, shown as bright blue spots). Credit: Chandra/Cell Reports 2015

Researchers at the BBSRC-supported Babraham Institute have mapped the physical structure of the nuclear landscape in unprecedented detail to understand changes in genomic interactions occurring in cell senescence and ageing. Their findings have allowed them to reconcile the contradictory observations of two current models of ageing: cellular senescence of connective tissue cells called fibroblasts and cellular models of an accelerated ageing syndrome.

Cellular senescence is an irreversible state of cell cycle arrest and enter senescence in response to a variety of stresses. For example, oncogene activation triggers cell senescence as a mechanism to protect against unregulated cell proliferation and the creation of tumours. Cellular senescence is also thought to have a role in normal developmental processes and hence in ageing.

In the first model, triggers large-scale spatial rearrangements of and the formation of dense nuclear domains called SAHF (senescence associated heterochromatic foci, seen as blue spots in the image above). Chromatin is the complex of DNA and proteins that forms the chromosomes in the nucleus. The second model uses fibroblast cells from people with a syndrome causing accelerated ageing (Hutchinson-Gilford progeria syndrome, HGPS) and these cells show reduced compaction of chromatin and do not show the creation of SAHF domains.

The Babraham Institute researchers measured the frequency of genome interactions occurring throughout the whole genome in senescent fibroblasts and compared them to studies on HGPS cells. This approach brought together scientists from two of the Institute's core research programmes: epigenetics and nuclear dynamics. Unexpectedly, they found that SAHF regions, thought to be highly condensed and structured, show a dramatic loss of local interconnectivity and internal structure in senescence chromatin and that this effect was also seen in the genomes from HGPS cells. Looking in detail at the genomic events occurring during cell senescence allowed the researchers to resolve SAHF formation into two stages: 1) changes in local connectivity in the genome, similar to those found in HGPS and 2) the senescence-specific clustering of these regions, creating the SAHF domains.

Dr Tamir Chandra, lead author and postdoctoral researcher based at both the Babraham Institute and Wellcome Trust Sanger Institute, said: "The seemingly opposite changes in chromatin behaviour between cell senescence and cells from HGPS patients have been an obstacle to understanding their contribution to ageing. Using physical interaction mapping, a direct measure of the genome architecture, our study suggests that the chromatin does initially change in a similar way in and HGPS. We can now focus our studies on these early events common to both model systems."

Professor Wolf Reik, Group Leader and Associate Director at the Babraham Institute and Associate Faculty at the Wellcome Trust Sanger Institute said: "There are probably important aspects of ageing which are regulated or influenced by epigenetic mechanisms such as chromatin compaction. It is therefore important to understand dynamic changes of epigenetic marks during ageing, how they come about, and what impact they have on altered cell function later in life".

The research, published in the journal Cell Reports, provides a common model of cellular ageing supported by both the study of senescence and progeria. Having a better understanding of the biological events contributing to ageing will result in benefits to health, wellbeing and independence in later life. This research was funded by support from the BBSRC and the Wellcome Trust.

Explore further: Clipping proteins that package genes may limit abnormal cell growth in tumors

More information: Chandra, Ewels et al. (2015). Global reorganisation of the nuclear landscape in senescent cells. Cell Reports, 2015.

Related Stories

Aging cells unravel their DNA

December 16, 2013

Senescent cells, which are metabolically active but no longer capable of dividing, contribute to aging, and senescence is a key mechanism for preventing the spread of cancer cells. A study in The Journal of Cell Biology identifies ...

Tipping the balance between senescence and proliferation

November 15, 2013

An arrest in cell proliferation, also referred to as cellular senescence, occurs as a natural result of aging and in response to cellular stress. Senescent cells accumulate with age and are associated with many aging phenotypes, ...

Recommended for you

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.