CAT scan of nearby supernova remnant reveals frothy interior

January 29, 2015, Harvard-Smithsonian Center for Astrophysics
This composite image shows two perspectives of a three-dimensional reconstruction of the Cassiopeia A supernova remnant. This new 3-D map provides the first detailed look at the distribution of stellar debris following a supernova explosion. Such 3-D reconstructions encode important information for astronomers about how massive stars actually explode. The blue-to-red colors correspond to the varying speed of the emitting gas along our line of sight. The background is a Hubble Space Telescope composite image of the supernova remnant. Credit: D. Milisavljevic (CfA) & R. Fesen (Dartmouth). Background image: NASA, ESA, and the Hubble Heritage Team.

Cassiopeia A, or Cas A for short, is one of the most well studied supernova remnants in our galaxy. But it still holds major surprises. Harvard-Smithsonian and Dartmouth College astronomers have generated a new 3-D map of its interior using the astronomical equivalent of a CAT scan. They found that the Cas A supernova remnant is composed of a collection of about a half dozen massive cavities - or "bubbles."

"Our three-dimensional map is a rare look at the insides of an exploded star," says Dan Milisavljevic of the Harvard-Smithsonian Center for Astrophysics (CfA). This research is being published in the Jan. 30 issue of the journal Science.

About 340 years ago a massive star exploded in the constellation Cassiopeia. As the star blew itself apart, extremely hot and radioactive matter rapidly streamed outward from the star's core, mixing and churning outer debris. The complex physics behind these explosions is difficult to model, even with state-of-the-art simulations run on some of the world's most powerful supercomputers. However, by carefully studying relatively young like Cas A, astronomers can investigate various key processes that drive these titanic stellar explosions.

"We're sort of like bomb squad investigators. We examine the debris to learn what blew up and how it blew up," explains Milisavljevic. "Our study represents a major step forward in our understanding of how stars actually explode."

To make the 3-D map, Milisavljevic and co-author Rob Fesen of Dartmouth College examined Cas A in near-infrared wavelengths of light using the Mayall 4-meter telescope at Kitt Peak National Observatory, southwest of Tucson, AZ. Spectroscopy allowed them to measure expansion velocities of extremely faint material in Cas A's interior, which provided the crucial third dimension.

They found that the large interior appear to be connected to - and nicely explain - the previously observed large rings of debris that make up the bright and easily seen outer shell of Cas A. The two most well-defined cavities are 3 and 6 light-years in diameter, and the entire arrangement has a Swiss cheese-like structure.

The bubble-like cavities were likely created by plumes of radioactive nickel generated during the stellar explosion. Since this nickel will decay to form iron, Milisavljevic and Fesen predict that Cas A's interior bubbles should be enriched with as much as a tenth of a solar mass of iron. This enriched interior debris hasn't been detected in previous observations, however, so next-generation telescopes may be needed to find the "missing" iron and confirm the origin of the bubbles.

A photograph of Cas A from NASA's Chandra X-ray Observatory reveals the supernova remnant's complex structure. In this representative-color image low-energy X-rays are red, medium-energy ones are green, and the highest-energy X-rays detected by Chandra are colored blue. Credit: NASA/CXC/SAO

Explore further: NuSTAR telescope takes first peek into core of supernova

More information: The researchers have posted an interactive version of their 3-D map online at www.cfa.harvard.edu/~dmilisav/casa-webapp/

"The bubble-like interior of the core-collapse supernova remnant Cassiopeia A," Science, www.sciencemag.org/lookup/doi/ … 1126/science.1261949

Related Stories

NuSTAR telescope takes first peek into core of supernova

February 19, 2014

(Phys.org) —Astronomers have peered for the first time into the heart of an exploding star in the final minutes of its existence. The feat by the high-energy X-ray satellite NuSTAR provides details of the physics of the ...

Image: Exploring the third dimension of Cassiopeia A

November 18, 2013

(Phys.org) —One of the most famous objects in the sky - the Cassiopeia A supernova remnant - will be on display like never before, thanks to NASA's Chandra X-ray Observatory and a new project from the Smithsonian Institution. ...

A star explodes, turns inside-out

March 29, 2012

(PhysOrg.com) -- A new X-ray study of the remains of an exploded star indicates that the supernova that disrupted the massive star may have turned it inside out in the process. Using very long observations of Cassiopeia A ...

Cassiopeia A Comes Alive Across Time and Space

January 6, 2009

(PhysOrg.com) -- Two new efforts have taken a famous supernova remnant from the static to the dynamic. A new movie of data from NASA's Chandra X-ray Observatory shows changes in time never seen before in this type of object. ...

Image: Multicoloured view of supernova remnant

December 22, 2014

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make stars as bright ...

Recommended for you

Milky Way's neighbors pick up the pace

January 22, 2019

After slowly forming stars for the first few billion years of their lives, the Magellanic Clouds, near neighbors of our own Milky Way galaxy, have upped their game and are now forming new stars at a fast clip. This new insight ...

A fleeting moment in time

January 22, 2019

The faint, ephemeral glow emanating from the planetary nebula ESO 577-24 persists for only a short time—around 10,000 years, a blink of an eye in astronomical terms. ESO's Very Large Telescope captured this shell of glowing ...

How hot are atoms in the shock wave of an exploding star?

January 21, 2019

A new method to measure the temperature of atoms during the explosive death of a star will help scientists understand the shock wave that occurs as a result of this supernova explosion. An international team of researchers, ...

New eclipsing cataclysmic variable discovered

January 21, 2019

Using the Mobile Astronomical System of Telescope-Robots (MASTER), an international team of astronomers has detected a new eclipsing cataclysmic variable. The newfound object, designated MASTER OT J061451.70–272535.5, is ...

The disintegrating exoplanet K2-22b

January 21, 2019

Exoplanet surveys have yielded many surprises over the years, and the discovery of "disintegrating" exoplanets was one of them. These are planets that produce asymmetric shapes in the dips of the light curves seen as they ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.