
 

Analysis yields better optimization
algorithms for engineering problems
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This sequence of graphs illustrates the application of the researchers' technique
to a real-world computer vision problem. The solution to each successive
problem (red balls) is used to initialize (green arrows) the search for a solution to
the next.

Optimization algorithms, which try to find the minimum values of
mathematical functions, are everywhere in engineering. Among other
things, they're used to evaluate design tradeoffs, to assess control
systems, and to find patterns in data.
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One way to solve a difficult optimization problem is to first reduce it to
a related but much simpler problem, then gradually add complexity back
in, solving each new problem in turn and using its solution as a guide to
solving the next one. This approach seems to work well in practice, but
it's never been characterized theoretically.

This month, at the International Conference on Energy Minimization
Methods in Computer Vision and Pattern Recognition, Hossein Mobahi,
a postdoc at MIT's Computer Science and Artificial Intelligence
Laboratory (CSAIL), and John Fisher, a senior research scientist at
CSAIL, describe a way to generate that sequence of simplified functions
that guarantees the best approximation that the method can offer.

"There are some fundamental questions about this method that we
answer for the first time," Mobahi says. "For example, I told you that
you start from a simple problem, but I didn't tell you how you choose
that simple problem. There are infinitely many functions you can start
with. Which one is good? Even if I tell you what function to start with,
there are infinitely many ways to transform that to your actual problem.
And that transformation affects what you get at the end."

Bottoming out

To get a sense of how optimization works, suppose that you're a canned-
food retailer trying to save money on steel, so you want a can design that
minimizes the ratio of surface area to volume. That ratio is a function of
the can's height and radius, so if you can find the minimum value of the
function, you'll know the can's optimal dimensions. If you're a car
designer trying to balance the costs of components made from different
materials with the car's weight and wind resistance, your
function—known in optimization as a "cost function"—will be much
more complex, but the principle is the same.
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Machine-learning algorithms frequently attempt to identify features of
data sets that are useful for classification tasks—say, visual features
characteristic of cars. Finding the smallest such set of features with the
greatest predictive value is also an optimization problem.

"Most of the efficient algorithms that we have for solving optimization
tasks work based on local search, which means you initialize them with
some guess about the solution, and they try to see in which direction they
can improve that, and then they take that step," Mobahi says. "Using this
technique, they can converge to something called a local minimum,
which means a point that compared to its neighborhood is lower. But it
may not be a global minimum. There could be a point that is much lower
but farther away."

A local minimum is guaranteed to be a global minimum, however, if the
function is convex, meaning that it slopes everywhere toward its
minimum. The function y = x2 is convex, since it describes a parabola
centered at the origin. The function y = sin x is not, since it describes a
sine wave that undulates up and down.

Smooth sailing

Mobahi and Fisher's method begins by trying to find a convex
approximation of an optimization problem, using a technique called
Gaussian smoothing. Gaussian smoothing converts the cost function into
a related function that gives not the value that the cost function would,
but a weighted average of all the surrounding values. This has the effect
of smoothing out any abrupt dips or ascents in the cost function's graph.

The weights assigned the surrounding values are determined by a
Gaussian function, or normal distribution—the bell curve familiar from
basic statistics. Nearby values count more toward the average than
distant values do.
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A Gaussian function is defined by a single parameter, which determines
its width. Mobahi and Fisher begin with a very wide Gaussian, which,
under certain conditions, yields a convex function. Then they steadily
contract the width of the Gaussian, generating a series of intermediary
problems. At each stage, they use the solution to the last problem to
initialize the search for a solution to the next one. By the time the width
of the distribution has shrunk to zero, they've recovered the original cost
function, since every value is simply the average of itself.

"The continuation method for optimization is something that is really
widely used in practice, widely used in computer vision, for solving
alignment problems, for solving tracking problems, a bunch of different
places, but it's not very well understood," says John Wright, an assistant
professor of electrical engineering at Columbia University who was not
involved in this work. "The interesting thing about Hossein's work in
general, and this paper in particular, is that he's really digging into this
continuation method and trying to see what we can say analytically about
this."

"The practical utility of that is, there might be any number of different
ways that you could go about doing smoothing or trying to do coarse-to-
fine optimization," Wright adds. "If you know ahead of time that there's
a right one, then you don't waste a lot of time pursuing the wrong ones.
You have a recipe rather than having to look around."

  More information: "On the Link Between Gaussian Homotopy
Continuation and Convex Envelopes": people.csail.mit.edu/hmobahi/p
… ian_convenv_2015.pdf

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.
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