Yellowstone's thermal springs—their colors unveiled

December 19, 2014, Optical Society of America
Photograph of Morning Glory Pool from Aug. 23, 2012. Credit: Joseph Shaw, Montana State University

Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of Yellowstone National Park's hot springs and can visually recreate how they appeared years ago, before decades of tourists contaminated the pools with make-a-wish coins and other detritus.

The model, and stunning pictures of the springs, appear today in the journal Applied Optics, which is published by The Optical Society (OSA).

If Yellowstone National Park is a geothermal wonderland, Grand Prismatic Spring and its neighbors are the ebullient envoys, steaming in front of the camera and gracing the Internet with their ethereal beauty. While the basic physical phenomena that render these colorful delights have long been scientifically understood—they arise because of a complicated interplay of underwater vents and lawns of bacteria—no mathematical model existed that showed empirically how the physical and chemical variables of a pool relate to their optical factors and coalesce in the unique, stunning fashion that they do.

"What we were able to show is that you really don't have to get terribly complex - you can explain some very beautiful things with relatively simple models," said Joseph Shaw, a professor at Montana State University and director of the university's Optical Technology Center. Shaw, along with his Ph.D. student Paul Nugent and German colleague Michael Vollmer, co-authored the new paper.

Using a relatively simple one-dimensional model for light propagation, the group was able to reproduce the brilliant colors and optical characteristics of Yellowstone National Park's hot springs by accounting for each pool's spectral reflection due to , their optical absorption and scattering of water and the incident solar and diffuse skylight conditions present when measurements were taken.

Historic and current simulations of Morning Glory Pool, using bare rock and pure water of varying depth for the historic image and a uniform orange microbial mat and pure water of varying depth for the current image. Credit: Nugent, Shaw, and Vollmer
"When we started the study, it was clear we were just doing it for fun," Vollmer said. But they quickly discovered there was very little in the scientific literature on the subject. That's when things got interesting.

Montana State University, in Bozeman, Mont., is a short drive away from Yellowstone National Park. In the summer of 2012, Vollmer, on sabbatical from the Brandenburg University of Applied Sciences, travelled with Shaw and Nugent to the park. Using handheld spectrometers, digital SLR cameras for visible images and long wave infrared thermal imaging cameras for non-contact measurement of the water temperatures, the group took measurements at a number of pools in Yellowstone, including Morning Glory Pool, Sapphire Pool and Grand Prismatic Spring. Using these data, along with previously available information about the physical dimensions of the pools, they were able to create a simple model whose renderings of the pools were strikingly similar to actual photographs.

In the case of Morning Glory Pool, they were even able to simulate what the pool once looked like between the 1880s and 1940s, when its temperatures were significantly higher. During this time, its waters appeared a uniform deep blue. An accumulation of coins, trash and rocks over the intervening decades has partially obscured the underwater vent, lowering the pool's overall temperature and shifting its appearance to a terrace of orange-yellow-green. This change from blue was demonstrated to result from the change in composition of the microbial mats, as a result of the lower water temperature.

A general relationship between shallow water temperature (hence microbial mat composition) and observed colors was confirmed in this study. However, color patterns observed in deeper segments of the pool are caused more by absorption and scattering of light in the water. These characteristics - mats having greater effect on color in shallow water, and absorption and scattering winning out in the deeper areas - are consistent across all the measured pools.

Photograph of Grand Prismatic Spring with people walking on boardwalk. Credit: Joseph Shaw, Montana State University
"Our paper describes a very simple, 1-dimensional model, that gives the first clue if you really want to do more," Vollmer said.

"We didn't start this project as experts on thermal pools," Shaw said. "We started this project as experts on optical phenomena and imaging, and so we had a lot to learn."

"There are people at my university who are world experts in the biological side of what's going on in the pools," Shaw said. "They're looking for ways to monitor changes in the biology - when the biology changes, that causes color changes - so we're actually looking at possibilities of collaborating in the future."

Future work for Nugent, Vollmer and Shaw includes delving further into infrared imaging at Yellowstone National Park.

Explore further: Nature's designs inspire research into new light-based technologies

More information: P.W. Nugent, J.A. Shaw and M. Vollmer, "Colors of Thermal Pools at Yellowstone National Park," ( www.opticsinfobase.org/ao/abst … cfm?uri=ao-54-4-B128 ), Applied Optics, Vol. 54, Issue 4, pp. B128-B139 (2015)

Related Stories

Yellowstone park considers bumping up bandwidth

November 3, 2014

Can Old Faithful compete with Netflix? The prospect of streaming wireless service deep inside Yellowstone National Park is re-igniting the debate over whether there should be any place off limits to technology.

Recommended for you

New insights into magnetic quantum effects in solids

January 23, 2019

Using a new computational method, an international collaboration has succeeded for the first time in systematically investigating magnetic quantum effects in the well-known 3-D pyrochlore Heisenberg model. The surprising ...

Rapid and continuous 3-D printing with light

January 22, 2019

Three-dimensional (3-D) printing, also known as additive manufacturing (AM), can transform a material layer by layer to build an object of interest. 3-D printing is not a new concept, since stereolithography printers have ...

Scientists discover new quantum spin liquid

January 22, 2019

An international research team led by the University of Liverpool and McMaster University has made a significant breakthrough in the search for new states of matter.

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.