Physicists create new kind of pasta to explain mysterious, ring-shaped polymers

December 1, 2014
A bowl of anelloni, consisting of ring-shaped spaghetti made from linguine. Credit: Davide Michieletto

Two physicists from the University of Warwick have taken to the kitchen to explain the complexity surrounding what they say is one of the last big mysteries in polymer physics.

As a way of demonstrating the complicated shapes that ring-shaped polymers can adopt, the researchers have created a brand new type of ring-shaped , dubbed "anelloni" (anello being the Italian word for "ring"), which they've exclusively unveiled in this month's Physics World.

With just 2 eggs and 200 g of plain flour, Davide Michieletto and Matthew S Turner have created large loops of pasta that, when cooked and thrown together in a bowl, get hugely tangled up, in much the same way that ring-shaped polymers become massively intertwined with each other.

A video of Davide Michieletto showing what it's like to eat this new kind of pasta was taken at the headquarters of Physics World.

Whereas it's easy when faced with a bowl of normal spaghetti to suck or pull a single strand out, it's much harder to extract a single piece of pasta from a pile of anelloni, which get horribly tangled up.

"The thing about ring-shaped polymers...is that they're very poorly understood - in fact, they're one of the last big mysteries in physics," the researchers write.

While the new kind of pasta is just a bit of fun, Michieletto and Turner's real work involves carrying out computer simulations of ring-shaped polymers, which have shown that if molecules are long enough, they are likely to get so tangled up that that they would appear frozen in place.

If this were true in real life - and there is some evidence to suggest that it is - then they believe they would have discovered a new state of matter, which they have called a "topological glass".

An ordinary glassy material is fashioned when a viscous liquid is cooled far enough that the molecules eventually stop moving and are frozen in place - they maintain the disordered structure of a liquid but develop the mechanical properties of a solid.

Plastic bottles, for example, are glassy materials that are set into shape when ordinary polymers - the building blocks of plastics - are rapidly cooled.

For a "topological glass" made from ring-shaped polymers, the motion of the individual molecules would slow down not just with temperature but also ring length, which Michieletto and Turner believe could inspire novel materials with applications that we cannot yet imagine.

"What would be nice about a topological glass is that its properties would be governed purely by topology, rather than the system-specific chemical details that often control when and how classical glasses form. Physicists love that kind of universal behaviour - in fact, obtaining a universal description of glasses has been a central goal in condensed-matter physics for several decades," they write.

While Michieletto and Turner wait for news on whether they've been granted more supercomputer time to push their simulations to the limit and learn more about these mysterious ring-shaped polymers, they can sit back and pass the time by picking apart a bowl of delicious, home-cooked anelloni.

"[W]hen it comes to eating pasta, the Italians were right all along - you're better off sticking to spaghetti, which you can eat nice and quickly. Make yourself a bowl of anelloni and it's likely to have gone cold by the time you've pulled all the rings apart and struggled your way to the messy end," they conclude.

Explore further: It looks like rubber but isn't

Related Stories

It looks like rubber but isn't

March 21, 2014

The experimental and numerical study of the behaviour of polymers in concentrated solutions is a line of research that is still highly active. In the past, it enabled us to understand why materials like rubber have certain ...

Recommended for you

Bacteria development marks new era in cellular design

December 11, 2017

Scientists at the universities of Kent and Bristol have built a miniature scaffold inside bacteria that can be used to bolster cellular productivity, with implications for the next generation of biofuel production.

Molecular beacon signals low oxygen with ultrasound

December 8, 2017

Areas of hypoxia, or low oxygen in tissue, are hallmarks of fast-growing cancers and of blockages or narrowing in blood vessels, such as stroke or peripheral artery disease. University of Illinois researchers have developed ...

Targeting cancer cells by measuring electric currents

December 8, 2017

EPFL researchers have used electrochemical imaging to take a step forward in mapping the distribution of biomolecules in tissue. This technology, which uses only endogenous markers – rather than contrast agents – could ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.