Novel microscopy pencils patterns in polymers at the nanoscale

December 17, 2014
Oak Ridge National Laboratory researchers used atomic force microscopy to draw nanoscale patterns in a polymerized ionic liquid. Credit: ORNL

Scientists at the Department of Energy's Oak Ridge National Laboratory have used advanced microscopy to carve out nanoscale designs on the surface of a new class of ionic polymer materials for the first time. The study provides new evidence that atomic force microscopy, or AFM, could be used to precisely fabricate materials needed for increasingly smaller devices.

Polymerized ionic liquids have potential applications in technologies such as lithium batteries, transistors and solar cells because of their high ionic conductivity and unique structure. But many aspects of the recently discovered materials are still not well understood.

When ORNL researchers used an to begin characterizing the properties of polymerized ionic liquid thin films, the experiment yielded some surprising results.

"We were expecting to measure ionic conductivity, and instead we found that we were forming holes on the surface," said ORNL's Vera Bocharova, corresponding author on the study published in Advanced Functional Materials. "Then we started to think about how this might have great applications in nanofabrication."

Nanolithography is the dominant technique used by industry for nanofabrication, but its size limitations are leading researchers to explore other methods such as AFM.

"This study is part of our search for alternative methods and materials that can be used to create smaller sized objects," Bocharova said. "For example, our technique might be interesting for the miniaturization of semiconductor technology."

Similar AFM techniques have been used to study and produce patterns in nonconductive polymers, but the ORNL study uncovered several differences in the application to polymerized ionic liquids.

"In comparison to nonconductive polymers, we have to apply less bias—four volts instead of 20 volts—to generate the holes, which is good in terms of energy savings for future applications," Bocharova said.

In nonconductive polymers, the high voltage applied through the AFM tip punctures the material's surface by localized heating. In contrast, the ORNL team used experiment and theory to determine that the holes formed in the conductive polymer liquids resulted from negative ions migrating to the positively charged microscope tip. The researchers plan to continue refining the technique's capabilities and their understanding of the polymerized ' properties.

"Right now the size of the formed features is in the range of 100 nanometers, but it's not the limit," Bocharova said. "We believe it's possible to change the experimental setup to advance to lower scales."

Explore further: Independent control of ionic and electronic conductivity research

More information: Advanced Functional Materials DOI: 10.1002/adfm.201402852

Related Stories

Scientists demonstrate novel ionic liquid batteries

April 15, 2011

(PhysOrg.com) -- Scientists at the NRL Materials Science and Technology Division are providing solid evidence that there is a new route towards developing novel, lightweight energy storage devices. By moving away from centuries ...

Silver ionic liquids are powerful solvents for oil industry

May 17, 2011

(PhysOrg.com) -- The separation of olefins and paraffin, two hydrocarbon compounds in petroleum waste streams, is a heavy expense for the petrochemical industry. The existing technology consumes a lot of energy because the ...

Recommended for you

Scientists develop first catalysed reaction using iron salts

January 20, 2017

Scientists at the University of Huddersfield have developed a new chemical reaction that is catalysed using simple iron salts – an inexpensive, abundant and sustainable alternative to costlier and scarcer metals. The research ...

Chemists cook up new nanomaterial and imaging method

January 20, 2017

A team of chemists led by Northwestern University's William Dichtel has cooked up something big: The scientists created an entirely new type of nanomaterial and watched it form in real time—a chemistry first.

Gecko inspired adhesive can attach and detach using UV light

January 19, 2017

(Phys.org)—A small team of researchers at Kiel University in Germany has developed new technology that emulates the way a gecko uses its toes to cling to flat surfaces. In their paper published in the journal Science Robotics, ...

Treated carbon pulls radioactive elements from water

January 19, 2017

Researchers at Rice University and Kazan Federal University in Russia have found a way to extract radioactivity from water and said their discovery could help purify the hundreds of millions of gallons of contaminated water ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.