New 'electronic skin' for prosthetics, robotics detects pressure from different directions

December 10, 2014
New 'electronic skin' for prosthetics, robotics detects pressure from different directions

Touch can be a subtle sense, but it communicates quickly whether something in our hands is slipping, for example, so we can tighten our grip. For the first time, scientists report the development of a stretchable "electronic skin" closely modeled after our own that can detect not just pressure, but also what direction it's coming from. The study on the advance, which could have applications for prosthetics and robotics, appears in the journal ACS Nano.

Hyunhyub Ko and colleagues explain that electronic skins are flexible, film-like devices designed to detect pressure, read , monitor or perform other functions. To boost sensitivity to touch, some of them mimic microstructures found in beetles and dragonflies, for example, but none reported so far can sense the of stress. This is the kind of information that can tell our bodies a lot about the shape and texture of an object and how to hold it. Ko's team decided to work on an electronic skin based on the structure of our own so it could "feel" in three dimensions.

The researchers designed a wearable artificial skin made out of tiny domes that interlock and deform when poked or even when air is blown across it. It could sense the location, intensity and direction of pokes, air flows and vibrations. The scientists conclude that their advance could potentially be used for , robotic skins and rehabilitation devices.

Explore further: Bridging sensory gap between artificial and real skin

More information: "Tactile-Direction-Sensitive and Stretchable Electronic Skins Based on Human-Skin-Inspired Interlocked Microstructures" ACS Nano, Article ASAP. DOI: 10.1021/nn505953t

Abstract
Stretchable electronic skins with multidirectional force-sensing capabilities are of great importance in robotics, prosthetics, and rehabilitation devices. Inspired by the interlocked microstructures found in epidermal–dermal ridges in human skin, piezoresistive interlocked microdome arrays are employed for stress-direction-sensitive, stretchable electronic skins. Here we show that these arrays possess highly sensitive detection capability of various mechanical stimuli including normal, shear, stretching, bending, and twisting forces. Furthermore, the unique geometry of interlocked microdome arrays enables the differentiation of various mechanical stimuli because the arrays exhibit different levels of deformation depending on the direction of applied forces, thus providing different sensory output patterns. In addition, we show that the electronic skins attached on human skin in the arm and wrist areas are able to distinguish various mechanical stimuli applied in different directions and can selectively monitor different intensities and directions of air flows and vibrations.

Related Stories

Bridging sensory gap between artificial and real skin

December 10, 2014

"Smart" prosthetics still has a long road ahead. In the human, skin-based mechanoreceptors and thermoreceptors gather information streams from the environment but it is not so easy to create artificial skin for people in ...

Scientists developing electronic skin

May 30, 2014

Once a topic explored exclusively in science fiction, the notion of restoring sensory feelings to humans and to machines is now approaching reality. Scientists around the world are developing artificial organs such as bionic ...

Electronic 'tongue' to ensure food quality

November 12, 2014

An electronic "tongue" could one day sample food and drinks as a quality check before they hit store shelves. Or it could someday monitor water for pollutants or test blood for signs of disease. With an eye toward these applications, ...

Silver nanowire sensors hold promise for prosthetics, robotics

January 16, 2014

(Phys.org) —North Carolina State University researchers have used silver nanowires to develop wearable, multifunctional sensors that could be used in biomedical, military or athletic applications, including new prosthetics, ...

Recommended for you

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...

Researchers discover new way to power electrical devices

December 11, 2017

A team of University of Alberta engineers developed a new way to produce electrical power that can charge handheld devices or sensors that monitor anything from pipelines to medical implants.The discovery sets a new world ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.