Chemically driven micro- and nanomotors

December 17, 2014
Chemically driven micro- and nanomotors

At least since the movie "The Fantastic Voyage" in 1966, in which a submarine is shrunk down and injected into the blood stream of a human, people have been toying with the idea of sending tiny "micromachines" and "nanorobots" into our organs or individual cells to carry out delicate "repairs". This is now beginning to approach the realm of possibility. In the journal Angewandte Chemie, scientists from Stuttgart present the current state of research in the area of catalytic micro- and nanomotors.

In order for tiny motors to move around, they can be driven externally, by means of electric or magnetic fields or ultrasound. "Self-propelled micro- and nanomotors can operate autonomously, driving themselves by means of catalytic reactions in liquids, for example," explain Samuel Sánchez and his co-authors from the Max Planck Institute for Intelligent Systems in Stuttgart in their review article. "Remote controlled nanomotors can transport cargo to desired targets, drill into biomaterials, sense their environment, mix or pump fluids, and clean polluted water," says Sánchez. At this point in time, the scientific goals are to find the best architecture for self-propulsion, to understand propulsion mechanisms, and to achieve very precise control over movement. In addition, the search for biocompatible fuels and drive mechanisms is of primary importance.

Purely synthetic micro- and nanomotors usually take the form of nanowires, nanospheres, or nanotubes. Nanowires made from combinations of different metals can be driven by self-electrophoresis, in which they move in a self-induced electric field resulting from an asymmetrical distribution of ions. Also interesting are nanospheres with two different hemispheres. This allows one half to be coated with a catalyst that causes an asymmetrical distribution of a reaction product, which moves the spheres along. Jet-shaped micro- or nanotubes whose interiors are coated with a catalyst are particularly versatile and efficient when they are driven by bubbles: a occurs inside the tubes, forming a gas—usually oxygen—that exits the wider opening in the form of bubbles, pushing the jet along. The "fuel" is usually hydrogen peroxide. Immobilized, the jets can also function as micropumps for use in applications such as microfluidic diagnostic and analytical chips.

In the field of biomedicine, the wish list includes micromotors that can selectively drill into tumor cells and destroy them. Self-propelled nanotransporters could carry drugs selectively to diseased organs. Other potential applications include the field of environmental remediation. "Micromotors with a hydrophobic coating could trap oil droplets in contaminated water and carry them away. Others could break down organic pollutants in water while actively mixing the solution." reports Sánchez.

Explore further: Jet-propelled wastewater treatment

More information: Chemically Powered Micro- and Nanomotors Angewandte Chemie International Edition

Related Stories

Jet-propelled wastewater treatment

December 20, 2013

Researchers from the Max Planck Institute for Intelligent Systems in Stuttgart have developed a new method for the active degradation of organic pollutants in solution by using swimming microengines. The mobile microcleaners ...

Newly discovered mechanism propels micromotors

October 15, 2013

Scientists studying the behavior of platinum particles immersed in hydrogen peroxide may have discovered a new way to propel microscopic machines. The new mechanism is described in The Journal of Chemical Physics.

Recommended for you

Atomic blasting creates new devices to measure nanoparticles

December 14, 2017

Like sandblasting at the nanometer scale, focused beams of ions ablate hard materials to form intricate three-dimensional patterns. The beams can create tiny features in the lateral dimensions—length and width, but to create ...

Engineers create plants that glow

December 13, 2017

Imagine that instead of switching on a lamp when it gets dark, you could read by the light of a glowing plant on your desk.

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.