How birds get by without external ears

December 11, 2014
The figures display the sound volumes displayed at the right ear for multiple sound positions -- for chicken, rook and duck, respectively. Credit: Schnyder HA, Vanderelst D, Bartenstein S, Firzlaff U, Luksch H (2014) The Avian Head Induces Cues for Sound Localization in Elevation. PLoS ONE 9(11): e112178. doi:10.1371/journal.pone.0112178

Unlike mammals, birds have no external ears. The outer ears of mammals play an important function in that they help the animal identify sounds coming from different elevations. But birds are also able to perceive whether the source of a sound is above them, below them, or at the same level. Now a research team from Technische Universität München (TUM) has discovered how birds are able to localize these sounds, namely by utilizing their entire head. Their findings were published recently in the PLOS ONE journal.

It is springtime, and two blackbirds are having a sing-off. They are both competing for the attentions of a female. But to pick a successful suitor, the female must first be able to find him.

"Because birds have no external ears, it has long been believed that they are unable to differentiate between sounds coming from different elevations," explains Hans A. Schnyder from the TUM Chair of Zoology. "But a female blackbird should be able to locate her chosen mate even if the source of the serenade is above her."

Mammals identify sound sources in the vertical plane using their external ears, which absorb, reflect or diffract the sound waves because of their special structure. Their sense of hearing uses this information to determine the elevation of the sound source. But how do birds perceive these differences?

The head does the work of external ears

By studying three avian species - crow, duck and chicken - Schnyder discovered that birds are also able to identify sounds from different elevation angles. It seems that their slightly oval-shaped transforms sound waves in a similar way to external ears.

"We measured the volume of sounds coming from different angles of elevation at the birds' eardrums," relates Schnyder. All sounds originating from the same side as the ear were similarly loud, regardless of their elevation. The ear on the opposite side of the head registered different elevations much more accurately - in the form of different volume levels.

Lateral eyed birds like black birds, ducks or crows can discern the height of lateral sounds very precisely dependent to the sound volumes. Frontal eyed birds like the barn owl has specific hearing capacities for frontal sounds. Credit: Schnyder HA, Vanderelst D, Bartenstein S, Firzlaff U, Luksch H (2014) The Avian Head Induces Cues for Sound Localization in Elevation. PLoS ONE 9(11): e112178. doi:10.1371/journal.pone.0112178

Different volume levels reveal sound sources

It all comes down to the shape of the avian head. Depending on where the sound waves hit the head, they are reflected, absorbed or diffracted. What the scientists discovered was that the head completely screens the sound coming from certain directions. Other pass through the head and trigger a response in the opposite ear.

The avian brain determines whether a sound is coming from above or below from the different sound volumes in both ears. "This is how birds identify where exactly a lateral sound is coming from - for example at eye height," continues Schnyder. "The system is highly accurate: at the highest level, birds can identify lateral sounds at an angle of elevation from -30° to +30°."

Interaction between hearing and sight improves orientation

Why have birds developed sound localization on the vertical plane? Most birds have eyes on the sides of their heads, giving them an almost 360° field of vision. Since they have also developed the special ability to process lateral sounds coming from different elevations, they combine information from their senses of hearing and vision to useful effect when it comes to evading predators.

A few of prey like the barn owl have developed a totally different strategy. This species hunts at night, and like humans its eyes are front-facing. The feather ruff on their face modifies sounds in a similar way to external ears. The owl hears sounds coming from in front of it better than the other bird species studied by Schnyder.

So there is a perfect interaction between the information they hear and the information they see - as earlier studies were able to demonstrate. "Our latest findings are pointing in the same direction: it seems that the combination of sight and hearing is an important principle in the evolution of animals," concludes Schnyder.

Explore further: Canal between ears helps alligators pinpoint sound

More information: The Avian Head Induces Cues for Sound Localization in Elevation; Hans A. Schnyder, Dieter Vanderelst, Sophia Bartenstein, Uwe Firzlaff and Harald Luksch; PLOS ONE, November 2014, DOI: 10.1371/journal.pone.0112178

Related Stories

Canal between ears helps alligators pinpoint sound

March 26, 2014

Alligators can accurately pinpoint the source of sounds. But it wasn't clear exactly how they did it because they lack external auditory structures. A new study shows that the alligator's ear is strongly directional because ...

Enabling the hearing impaired to locate human speakers

November 26, 2014

New wireless microphones systems developed at EPFL should allow the hearing impaired to aurally identify, even with closed eyes, the location of the person speaking. This new technology will be used in classrooms and conference ...

Teaching about hearing can save young people's ears

March 5, 2012

Many adolescents frequently expose their ears to loud sounds, for example from portable music players. Some of them may think that 'the doctor said that my hearing is good, so I guess I can handle the loud volume'. A new ...

Recommended for you

What humans and primates both know when it comes to numbers

January 18, 2017

For the past several years, Jessica Cantlon has been working to understand how humans develop the concept of numbers, from simple counting to complex mathematical reasoning. Early in her career at the University of Rochester, ...

Male baboons found to engage in feticide

January 18, 2017

(Phys.org)—A team of researchers from several institutions in the U.S., some with ties to the Institute of Primate Research, National Museums of Kenya, has found that male baboons in the wild at times engage in feticide. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.