Acoustic tweezers manipulate cell-to-cell contact

December 22, 2014, Pennsylvania State University
Standing acoustic wave device to place cells in locations where they can be manipulated to touch or to be in close proximity Credit: Tony Jun Huang, Penn State

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate cell spacing and contact.

"Optical tweezers are the gold-standard technique in the field," said Tony Jun Huang, professor of engineering science and mechanics. "They can trap two in place, but because of their high power they tends to affect the integrity of cells, and sometimes damage them.

Acoustic tweezers use the same low-power acoustic waves as those used in existing ultrasound machines, so they are gentle and can preserve cell integrity.

The researchers are manipulating cells so that they can look at direct contact between two cell membranes or precisely control and maintain a variety of distances between cells and determine how cells communicate.

"The value of acoustic tweezers for studying cell-to-cell information transfer is their ability to separate the cells to a precise distance or to bring them to a predetermined contact," said Stephen J. Benkovic, Evan Pugh Professor and Eberly Chair in Chemistry. "Optical tweezers can do this to some extent but suffer from heating of the sample."

The acoustic tweezers device that the researchers envision is no larger than a cell phone and can achieve a throughput of thousands of cells. By altering the acoustic field, the cells can be precisely manipulated without damage. Because the acoustic tweezers operate in a vertical channel that holds the cell-containing liquid, the researchers can trap the cells in suspension or allow them to settle onto the surface of the substrate.

Micrographs of cells separated at various intervals from 0 microns to 15 microns. Credit: Tony Jun Huang, Penn State

The researchers place four acoustic sources on opposite sides of the substrate. When opposing devices send out surface acoustic waves, they set up a grid of nodes where the sound pressure cancels out. Cells become trapped at those nodes. By modulating the power and frequencies of the acoustic sources, the researchers can manipulate the number of cells and also their position. Two cells can be moved to touch each other or to almost touch each other with a variety of separation distances.

The cells can also be positioned in patterns including lines of multiple cells, daisy-like clumps of cells or even triangles of cells.

"With present technologies, the generation of a desired cell-to-cell contact is often random or limited in number," said Benkovic. "With standing , precise positioning of cells can be achieved on a multi-cellular level so that planned patterns of cellular arrays can be achieved.

Micrographs of cells arranged in straight lines, globs and trianges. Credit: Tony Jun Huang
"One can imagine a study of a cell's infection by a bacterium as well as the creation of a long cellular assembly, for example the formation of a nerve from neurons."

Because the can be created on a substrate that is transparent, the researchers can use microscopes to view the resulting cell alignments. Huang, Benkovic and colleagues put fluorescent dye into one of a pair of almost touching cells and watched the dye move into the neighboring cell through tiny protein channels established between them, demonstrating how chemical communication might be tracked using this device.

Explore further: Acoustic tweezers capture tiny creatures with ultrasound (w/ Video)

More information: Controlling cell–cell interactions using surface acoustic waves, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1422068112

Related Stories

Tilted acoustic tweezers separate cells gently

August 25, 2014

Precise, gentle and efficient cell separation from a device the size of a cell phone may be possible thanks to tilt-angle standing surface acoustic waves, according to a team of engineers.

Acoustic tweezers can position tiny objects

August 28, 2009

(PhysOrg.com) -- Manipulating tiny objects like single cells or nanosized beads often requires relatively large, unwieldy equipment, but now a system that uses sound as a tiny tweezers can be small enough to place on a chip, ...

Going with the flow

September 12, 2012

Scientists who study tissue engineering and test new drugs often need to sort, rotate, move, and otherwise manipulate individual cells. They can do this by prodding the cells into place with a mechanical probe or coaxing ...

Recommended for you

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

Toward ultrafast spintronics

January 21, 2019

Electronics have advanced through continuous improvements in microprocessor technology since the 1960s. However, this process of refinement is projected to stall in the near future due to constraints imposed by the laws of ...

New thermoelectric material delivers record performance

January 17, 2019

Taking advantage of recent advances in using theoretical calculations to predict the properties of new materials, researchers reported Thursday the discovery of a new class of half-Heusler thermoelectric compounds, including ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.