New technique to help produce next-generation photonic chips

November 17, 2014, University of Southampton
Ultrafast photomodulation spectroscopy with the sample in the middle and the small blue spot on the sample, which shows the actual pump-light used in the method. Credit: University of Southampton

Researchers from the University of Southampton have developed a new technique to help produce more reliable and robust next generation photonic chips.

Photonic chips made from silicon will play a major role in future optical networks for worldwide data traffic. The high of silicon makes the size of a fraction of the diameter of a human hair possible. Squeezing more and more optical structures for light distribution, modulation, detection and routing into smaller chip areas allows for higher data rates at lower fabrication costs.

As the complexity of optical chips increases, testing and characterising such chips becomes more difficult. Light traveling in the chip is confined in the silicon, that is, it cannot be 'seen' or measured from the outside.

Southampton researchers have now developed a new method, which will help solve this problem, to find out at which time the light in the chip is at which position. The , called Ultrafast photomodulation spectroscopy (UPMS), uses ultraviolet laser pulses of femtosecond duration to change the refractive index of silicon in a tiny area on the .

Non-contact characterization tools like UPMS are vital for scientist designing complex photonic chips. The UPMS technique is fast and robust and has the potential to be used for industrial testing in the photonics industry.

The research is published in the latest issue of the journal Nature Photonics.

Dr Roman Bruck, from Physics and Astronomy at the University of Southampton and lead author of the study, says: "Monitoring the transmission of the chip while the refractive index is locally changed gives a precise picture of how the light flows through it. This allows testing of individual optical elements on the chip, a crucial step in the design optimisation to ensure its flawless operation. Because the changes induced by the technique are fully reversible, this testing method is non-destructive and after testing, the can be used for its intended application."

Concept of ultrafast photomodulation spectroscopy. Credit: University of Southampton

The research team, from Physics and Astronomy and the Optoelectronics Research Centre (ORC) at the University, expects to establish the technique as a standard characterisation tool, making photonic chips under development more reliable and bringing them into the market quicker. The work has been funded by the Engineering and Physical Sciences Research Council (EPSRC).

Explore further: Breakthrough technique offers prospect of silicon detectors for telecommunications

More information: Nature Photonics, DOI: 10.1038/NPHOTON.2014.274

Related Stories

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.