Startup measures movement in cells to improve cancer drug development

November 5, 2014, Purdue University

Officials at a life sciences startup based on a Purdue University innovation say their technology could help pharmaceutical companies find more effective drug candidates and improve the results of personalized cancer care.

David Nolte, president of Animated Dynamics Inc., said screen millions of compounds annually to find new . In traditional lead testing, which occurs at a later stage in the process, tens of thousands of compounds are screened in Petri dishes.

"The biology happening in Petri dishes during lead testing is not the biology that goes on inside a tissue. There are differences in how cells respond to drugs in a three-dimensional environment, which means the results that occur in Petri dishes may not be the same as the results that occur in the body," said Nolte, who also is a professor in Purdue's Department of Physics and Astronomy. "The advantage our provides is that it can help with lead selection of compounds in a biologically relevant context."

Nolte and John Turek, the company's executive vice president and , created technology that uses holography and lasers to study a cell's phenotype, or the observable traits that result from how cells in tissues interact with their environment. The technology was highlighted in a letter of the peer-reviewed Journal of Biomedical Optics.

Turek, who also is a professor in Purdue's Department of Basic Medical Sciences, said the technology makes digital holograms of tissues. The holographic technique allows researchers to see all the way through a tissue, not just the surface.

"We use spectroscopy to measure the time-dependent changes in the hologram," he said. "It breaks down the changes into different frequencies, and we can tell how a cell's membranes, mitochondria, nucleus and even cell division respond to drugs. We measure the frequency of the light fluctuations as a function of time after a is applied."

Nolte said Animated Dynamics' technology can be used to assess the efficacy of drug combinations, called regimens, on personal cancers.

"No two cancers are alike. Therefore, every patient needs his or her own selected therapy to get the best results," he said. "Our technology can measure a cancer tumor's response to cancer therapy, such as metabolism and cell division. This can tell how well the drug is working for the patient and can aid in predicting side effects."

Explore further: Innovation could improve personalized cancer-care outcomes

Related Stories

Innovation could improve personalized cancer-care outcomes

August 16, 2013

An innovation created by Purdue University researchers could improve therapy selection for personalized cancer care by helping specialists better identify the most effective drug treatment combinations for patients.

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.