PHYS 19X

It's possible to write flaw-free software, so
why don't we?

November 11 2014, by Eerke Boiten

If Spock would not think it illogical, it’s probably good code. Credit: Alexandre
Buisse, CC BY-SA

Legendary Dutch computer scientist Edsger W Dijkstra famously
remarked that "testing shows the presence. not the absence of bugs". In
fact the only definitive way to establish that software is correct and bug-
free 1s through mathematics.

1/6


http://www.cs.utexas.edu/users/EWD/
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF

PHYS 19X

It has long been known that software is hard to get right. Since Friedrich
L Bauer organised the very first conference on "software engineering" in
1968, computer scientists have devised methodologies to structure and
guide software development. One of these, sometimes called strong
software engineering or more usually formal methods, uses mathematics
to ensure error-free programming.

As the economy becomes ever more computerised and entwined with the
internet, flaws and bugs in software increasingly lead to economic costs
from fraud and loss. But despite having heard expert evidence that
echoed Dijkstra's words and emphasises the need for the correct,
verified software that formal methods can achieve, the UK government
seems not to have got the message.

Formal software engineering

The UK has always been big in formal methods. Two British computer
scientists, Tony Hoare (Oxford 1977-, Microsoft Research 1999-) and
the late Robin Milner (Edinburgh 1973-95, Cambridge 1995-2001) were
given Turing Awards — the computing equivalent of the Nobel Prize —
for their work in formal methods.

British computer scientist Cliff B Jones was one of the inventors of the
Vienna Development Method while working for IBM in Vienna, and
IBM UK and Oxford University Computing Laboratory, led by Tony
Hoare, won a Queen's Award for Technological Achievement for their
work to formalise IBM's CICS software. In the process they further
developed the Z notation which has become one of the major formal
methods.

The formal method process entails describing what the program is
supposed to do using logical and mathematical notation, then using
logical and mathematical proofs to verify that the program indeed does

2/6


http://computer.org/computer-pioneers/pdfs/B/Bauer.pdf
http://computer.org/computer-pioneers/pdfs/B/Bauer.pdf
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/
https://phys.org/tags/software+engineering/
http://users.ece.cmu.edu/~koopman/des_s99/formal_methods/
http://www.cs.ox.ac.uk/people/tony.hoare/
http://research.microsoft.com/en-us/news/features/hoare-080411.aspx
http://www.cl.cam.ac.uk/archive/rm135/
http://amturing.acm.org/
http://homepages.cs.ncl.ac.uk/cliff.jones/
http://overturetool.org/method/
https://www.gov.uk/queens-awards-for-enterprise
http://www.bcs.org/upload/pdf/advprog-apr06.pdf
http://formalmethods.wikia.com/wiki/Z_notation
http://math.berkeley.edu/~hutching/teach/proofs.pdf

PHYS 19X

what it should. For example, the following Hoare logic formula
describing a program's function shows how formal methods reduce code
to something as irreducibly true or false as 1 + 1 = 2.

P{s}Q Q{T}R
P{S;T}R

Hoare logic formula: if a program S started in a state satisfying P takes us to a
state satisfying Q, and program T takes us from Q to R, then first doing S and
then T takes us from P to R.

Taught at most UK universities since the mid-1980s, formal methods
have seen considerable use by industry in safety-critical systems. Recent
advances have reached a point where formal methods' capacity to check
and verify code can be applied at scale with powerful automated tools.

Government gets the message

Is there any impetus to see them used more widely, however? When the
Home Affairs Committee took evidence in its E-crime enquiry in April
2013, Professor Jim Norton, former chair of the British Computer
Society, told the committee:

3/6


http://www.inrialpes.fr/vasy/fmics/
http://www.publications.parliament.uk/pa/cm201314/cmselect/cmhaff/70/70.pdf
http://www.profjimnorton.com/
http://www.bcs.org
http://www.bcs.org

PHYS 19X

We need better software, and we know how to write software very much
better than we actually do in practice in most cases today... We do not
use the formal mathematical methods that we have available, which we
have had for 40 years, to produce better software.

Based on Norton's evidence, the committee put forward in
recommendation 32 "that software for key infrastructure be provably
secure, by using mathematical approaches to writing code."

Two months later in June, the Science and Technology Committee took
evidence on the Digital by Default programme of internet-delivered
public services. One invited expert was Dr Martyn Thomas, founder of
Praxis, one of the most prominent companies using formal methods for
safety-critical systems development. Asked how to achieve the required
levels of security, he replied that:

Heroic amounts of testing won't give you a high degree of confidence
that things are correct or have the properties you expect... it has to be
done by analysis. That means the software has to be written in such a
way that it can be analysed, and that is a big change to the way the
industry currently works.

The committee sent an open letter to cabinet secretary Francis Maude in
asking whether the government "was confident that software developed
meets the highest engineering standards."

Trustworthy software is the answer

The government, in its response to the E-crime report in October 2013,
stated:

The government supports Home Affairs Committee recommendation
32. To this end the government has invested in the Trustworthy Software

4/6


http://www.publications.parliament.uk/pa/cm201314/cmselect/cmsctech/uc252-i/uc25201.htm
http://www.publications.parliament.uk/pa/cm201314/cmselect/cmsctech/uc252-i/uc25201.htm
https://www.gov.uk/service-manual/digital-by-default
http://www.thomas-associates.co.uk/
http://www.altran.co.uk/
http://www.parliament.uk/documents/commons-committees/science-technology/130709-Chair-to-Francis-Maude.pdf
http://www.parliament.uk/documents/commons-committees/home-affairs/E-crime-Government-Response-Cm-8734.pdf
http://uk-tsi.org.uk

PHYS 19X

Initiative, a public/private partnership initiative to develop guidance and
information on secure and trustworthy software development.

This sounded very hopeful. Maude's reply to the Science and
Technology committee that month was not published until October 2014,
but stated much the same thing.

So one might guess that the TSI had been set up specifically to address
the committee's recommendation, but this turns out not to be the case.
The TSI was established in 2011, in response to governmental concerns
over (cyber) security. Its "initiation phase" in which it drew from
academic expertise on trustworthy software ended in August 2014 with
the production of a guide entitled the Trustworthy Security Framework,

available as British Standards Institute standard PAS 754:2014.

This is a very valuable collection of risk-based software engineering
practices for designing trustworthy software (and not, incidentally, the
"agile, iterative and user-centric" practices described in the Digital by
Default service manual). But so far formal methods have been given no
role in this. In a keynote address at the 2012 BCS Software Quality
Metrics conference, TSI director lan Bryant gave formal methods no
more than a passing mention as a "technical approach to risk
management".

So the UK government has been twice advised to use mathematics and
formal methods to ensure software correctness, but having twice
indicated that the TSI is its vehicle for achieving this, nothing has
happened. Testing times for software correctness, then, something that
will continue for as long as it takes for Dijkstra's message to sink in.

This story is published courtesy of The Conversation (under Creative
Commons-Attribution/No derivatives).

5/6


http://uk-tsi.org.uk
http://www.parliament.uk/documents/commons-committees/science-technology/Correspondence/131031MaudeDigitalbyDefault.pdf
http://www.parliament.uk/documents/commons-committees/science-technology/Correspondence/131031MaudeDigitalbyDefault.pdf
https://twitter.com/CommonsSTC/status/527074057515446272
http://www.uk-tsi.org/?page_id=1175
http://shop.bsigroup.com/ProductDetail/?pid=000000000030284608
https://www.gov.uk/service-manual/digital-by-default
https://www.gov.uk/service-manual/digital-by-default
http://ssdri-web.s3-website-eu-west-1.amazonaws.com/TSI_2012_165_SQM_2012_Keynote_Web.pdf
http://www2.warwick.ac.uk/fac/sci/wmg/research/csc/people/
https://phys.org/tags/software/
http://theconversation.edu.au/

PHYS 9%
Source: The Conversation

Citation: It's possible to write flaw-free software, so why don't we? (2014, November 11)
retrieved 19 April 2024 from https://phys.org/news/2014-11-flaw-free-software-dont.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

6/6


https://phys.org/news/2014-11-flaw-free-software-dont.html
http://www.tcpdf.org

