Diet affects pesticide resistance in honey bees

November 3, 2014 by A'ndrea Elyse Messer, Pennsylvania State University
'Honey bees are exposed to hundreds of pesticides, while they are foraging on flowers and also when beekeepers apply chemicals to control bee pests,' said Christina Grozinger, professor of entomology and director of the Center for Pollinator Research, Penn State. Credit: Daniel Schmehl, University of Florida

Feeding honey bees a natural diet of pollen makes them significantly more resistant to pesticides than feeding them an artificial diet, according to a team of researchers, who also found that pesticide exposure causes changes in expression of genes that are sensitive to diet and nutrition.

"Honey are exposed to hundreds of pesticides, while they are foraging on flowers and also when beekeepers apply chemicals to control bee pests," said Christina Grozinger, professor of entomology and director of the Center for Pollinator Research, Penn State. "Our study demonstrates that exposure to non-lethal doses of at least two of these pesticides causes large changes in the expression of genes involved in detoxification, immunity and nutrition-sensing. This is consistent with results from previous studies that have found that compromises bees' immune systems. Furthermore, our study reveals a strong link, at the molecular level, between nutrition, diet and pesticide exposure."

Exploring this link further, the researchers found that diet significantly impacts how long bees can survive when given lethal doses of a pesticide.

"This interaction between pesticide exposure and nutrition is likely what's at play in our finding that feeding bees a complex diet of pollen—their natural diet—makes them significantly more resistant to lethal doses of a pesticide than feeding them a more simple, artificial diet," said Daniel Schmehl, postdoctoral researcher, University of Florida.

To determine the impact of pesticide exposure on patterns in honey bees, the scientists first fed one of two miticides—coumaphos or fluvalinate, the two most abundant and frequently detected pesticides in the hive—to bees for a period of seven days. On the seventh day, the researchers extracted RNA from the bees, attached a fluorescent marker to the RNA and examined differences in gene expression patterns—indicated by changes in patterns of fluorescence—between the pesticide-treated bees and the control bees.

Feeding honey bees a natural diet of pollen makes them significantly more resistant to pesticides than feeding them an artificial diet, according to a team of researchers. Credit: Maryann Frazier, Penn State

"We found significant changes in 1,118 transcripts—or pieces of RNA—among the bees that were fed either of the two miticides compared to the control group," said Schmehl. "These transcripts included genes involved in detoxification, immunity and nutrition."

Based upon the results, the team performed several subsequent analyses aimed at understanding the impact of pesticides on honey bee physiology. One of these subsequent analyses examined the susceptibility of bees to pesticide stress after consuming a pollen diet or an artificial diet—either a soy protein or no protein diet. The team fed the bees these diets while simultaneously feeding them a lethal dose of the pesticide chlorpyrifos, an insecticide that is frequently used to control pests in agricultural crops and commonly detected in honey bee hives. They then recorded bee mortality daily for each of the treatment groups for a period of 16 days.

The researchers found that the bees that were fed a pollen-based diet exhibited reduced sensitivity to chlorpyrifos compared to the bees that were fed an artificial diet.

The results appear in the online issue of the Journal of Insect Physiology.

"This is the first time such a strong link between pesticide exposure and has been demonstrated at the , and the first time the effects of artificial versus natural diets have been explored in terms of resistance to pesticides," said Grozinger. "Diet and nutrition can greatly impact the ability of bees to resist pesticides, and likely other stressors. However, agriculture and urbanization have reduced the amounts and diversity of flowering plants available to bees, which likely nutritionally stresses them and makes them more sensitive to these other stressors. If we can figure out which diets and which flowering plants are nutritionally optimal for honey bees, we can help bees help themselves."

Explore further: Bee foraging chronically impaired by pesticide exposure, study finds

Related Stories

Recommended for you

A new, dynamic view of chromatin movements

January 18, 2018

In cells, proteins tightly package the long thread of DNA into pearl necklace-like complexes known as chromatin. Scientists at EPFL show for the first time how chromatin moves, answering longstanding questions about how its ...

How living systems compute solutions to problems

January 17, 2018

How do decisions get made in the natural world? One possibility is that the individuals or components in biological systems collectively compute solutions to challenges they face in their environments. Consider that fish ...

Scale-eating fish adopt clever parasitic methods to survive

January 17, 2018

Think of them as extra-large parasites. A small group of fishes—possibly the world's cleverest carnivorous grazers—feeds on the scales of other fish in the tropics. The different species' approach differs: some ram their ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

docjsf
not rated yet Nov 05, 2014
Was really interested in this article as in the beekeeping world, the big debate is usually always over feeding sugar to hive with little discussion about feeding an artifical "pollen patty". would love to read the primary article

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.