Tremendously bright pulsar may be one of many

October 27, 2014, The Kavli Foundation
The starburst galaxy Messier 82 (M82) is home to a pulsar that appears to burn with the energy of 10 million suns. Credit: NASA, European Space Agency, and the Hubble Heritage Team

Recently, a team of astronomers reported discovering a pulsating star that appears to shine with the energy of 10 million suns. The find, which was announced in Nature, is the brightest pulsar – a type of rotating neutron star that emits a bright beam of energy that regularly sweeps past Earth like a lighthouse beam – ever seen. But what are the odds finding another one?

According to one of the paper's authors, chances are good now that they know what to look for.

Professor Deepto Chakrabarty of the Kavli Institute for Astrophysics and Space Research at the Massachusetts Institute of Technology says he is optimistic that will find additional ultra-bright pulsars now that they know such objects exist.

"Detecting pulsations in faint sources is challenging, because the X-ray data are not always collected with sufficiently high time-resolution to make the measurement," he says. "Our discovery will now justify the additional effort required to make such timing observations."

Astronomers previously thought that this type of "ultraluminous X-ray source" was likely to be made up of five to 50 times more massive than our sun, radiating energy as they pull in nearby matter. This discovery that at least one ULX source is in fact a pulsar brings that understanding into question.

"Black holes are unable to produce coherent pulsations like what we are seeing here," Chakrabarty says.

The discovery is even more surprising because pulsars by nature are not very massive objects and so have always been assumed capable of only relatively moderate X-ray signals. The newly discovered pulsar is far brighter than previously thought possible.

Chakrabarty says he believes the mysteries of how a could beam so bright can be solved through additional experimental observations – and with the assistance of theorists.

"It is clear that some sort of specialized beaming may be going on here, but coming up with a sensible and self-consistent picture may be a challenge," he says. "Observing some more examples of ULX pulsars could be very helpful in sorting this out, giving us some different sets of system parameters to work with."

Explore further: First ultraluminous pulsar: NuSTAR discovers impossibly bright dead star

More information: Turbulent heating in galaxy clusters brightest in X-rays, DOI: 10.1038/nature13830

Related Stories

Image: Pulsar encased in a supernova bubble

June 2, 2014

(Phys.org) —Massive stars end their lives with a bang: exploding as spectacular supernovas, they release huge amounts of mass and energy into space. These explosions sweep up any surrounding material, creating bubble remnants ...

Fermi finds a 'transformer' pulsar

July 22, 2014

(Phys.org) —In late June 2013, an exceptional binary containing a rapidly spinning neutron star underwent a dramatic change in behavior never before observed. The pulsar's radio beacon vanished, while at the same time the ...

A pulsar's mysterious tail

July 14, 2011

(PhysOrg.com) -- A spinning neutron star is tied to a mysterious tail -- or so it seems. Astronomers using NASA's Chandra X-ray Observatory have found that this pulsar, known as PSR J0357+3205 (or PSR J0357 for short), apparently ...

Recommended for you

Did a rogue star change the makeup of our solar system?

July 20, 2018

A team of researchers from the Max-Planck Institute and Queen's University has used new information to test a theory that suggests a rogue star passed close enough to our solar system millions of years ago to change its configuration. ...

Where to search for signs of life on Titan

July 20, 2018

New findings, published in the journal Astrobiology, suggest that large craters are the prime locations in which to find the building blocks of life on Saturn's largest moon, Titan.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

mikep608
1 / 5 (1) Oct 29, 2014
HERE'S MY WEBPAGE LINK. I LIKE TO REINTERPRET EXPERIMENTAL RESULTS SO WE CAN HAVE MORE USEFUL KNOWLEDGE TO GUIDE US IN PROGRESS

https://www.faceb...timeline

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.